Звёзды гиганты и сверхгиганты. Самые большие звезды гиганты

Больше Солнца в 10-100 раз и в 10-1000 раз более яркие. Красные гиганты - звезды, что на поздних стадиях эволюции увеличиваются в 10-100 раз, становятся менее горячими на поверхности и медленно сбрасывают в окружающее пространство свои газовые оболочки. В звездах-гигантах после использования всего водорода, который содержится в них, начинаются реакции синтеза углерода из ядер гелия.

Самые крупные звезды продолжают увеличиваться после превращения у красных гигантов и могут превратиться у сверхгигантов. Сверхгиганты бывают в 500 раз большие от Солнца за диаметром, а их абсолютные звездные величины изменяются от минус 5 к минус 10.

А это видео наглядно продемонстрирует то, о чем было сказано выше. Еще раз убеждаешься в том, насколько многообразна и удивительна наша Вселенная!

Наибольшая из известных звезд - это сверхгигант Ов2№12 в созвездии Лебедя, который в 810 000 раз ярче Солнца. Давление в центре сверхгигантов достаточно для реакций синтеза гелия и образования атомов железа.

Все железо Вселенной образовано в центральных частях сверхгигантов. Сверхгиганты со временем сжимаются, взрываются и становятся сверхновыми.

За исключением Луны и всех планет любой кажущийся неподвижным на небе объект является звездой - термоядерным источником энергии, и типы звёзд варьируют от карликов до сверхгигантов.

Наше - звезда, но оно кажется таким ярким и большим из-за близости к нам. Большинство звёзд выглядят светящимися точками даже в мощные телескопы и, тем не менее, нам о них кое-что известно. Так, мы знаем, что они бывают разных размеров и, по крайней мере, половина из них состоит из двух и более звёзд, связанных силой гравитации.

Что такое звезда?

Звёзды - это огромные газовые шары из водорода и гелия со следами других химических элементов. Гравитация притягивает вещество внутрь, а давление раскалённого газа выталкивает его наружу, устанавливая равновесие. Источник энергии звезды находится в её ядре, где ежесекундно миллионы тонн водорода сливаются, образуя гелий. И хотя в недрах Солнца этот процесс идёт непрерывно на протяжении почти 5 млрд. лет, израсходована лишь очень малая часть всех запасов водорода.

Типы звёзд

Звезды главной последовательности. В начале XX в. голландец Эйнар Герцшпрунг и Генри Норрис Ресселл из США построили диаграмму Герцшпрунга - Ресселла (ГР), по осям которой отложена светимость звезды в зависимости от температуры на ее поверхности, что позволяет определить расстояние до звезд.

Большинство звёзд, включая Солнце, попадают в полосу, пересекающую диаграмму ГР по диагонали и именуемую главной последовательностью. Эти звезды часто называются карликами, хотя некоторые из них в 20 раз превосходят по размеру Солнце и светят в 20 тыс. раз ярче.

Красные карлики

В холодном, тусклом конце главной последовательности находятся красные карлики - наиболее распространённый вид звёзд. Будучи размером меньше, чем Солнце, они экономно тратят свои запасы топлива, чтобы продлить время собственного существования на десятки миллиардов лет. Если можно было бы видеть все красные карлики, небо было бы буквально усеяно ими. Однако красные карлики светят так слабо, что мы в состоянии наблюдать лишь ближайшие к нам, такие, как Проксима Центавра.

Белые карлики

Ещё меньшими по размеру, чем красные карлики, являются белые карлики. Обычно их диаметр примерно равен земному, но масса может равняться массе Солнца. Объем вещества белого карлика, равный объёму этой книги, имел бы массу около 10 тыс. тонн! Их положение на диаграмме ГР показывает, что они сильно отличаются от красных карликов. Их ядерный источник истощился.

Красные гиганты

После звёзд главной последовательности наиболее распространёнными являются красные гиганты. Они имеют примерно такую же температуру поверхности, как и красные карлики, но они намного ярче и больше, поэтому расположены над главной последовательностью на диаграмме ГР. Масса этих гигантов обычно примерно равна солнечной, однако, если бы один из них занял место нашего светила, внутренние планеты Солнечной системы оказались бы в его атмосфере.

Сверхгиганты

В верхней части диаграммы ГР располагаются редкие сверхгиганты. Бетельгейзе в плече Ориона имеет в поперечнике почти 1 млрд. км. Другой яркий объект Ориона - Ригель, одна из самых ярких звёзд, которая видна невооружённым глазом. Он почти в десять раз меньше Бетельгейзе и при этом почти в 100 раз превосходит размеры Солнца.

Исторический сайт Багира - тайны истории, загадки мироздания. Загадки великих империй и древних цивилизаций, судьбы исчезнувших сокровищ и биографии людей изменивших мир, секреты спецслужб. История войн, загадки сражений и боёв, разведывательные операции прошлого и настоящего. Мировые традиции, современная жизнь России, загадки СССР, главные направления культуры и другие связанные темы - всё то о чём молчит официальная история.

Изучайте тайны истории - это интересно…

Сейчас читают

Стремление воюющих сторон повлиять на противника средствами пропаганды, дезинформации, запугивания и подкупа - неизменный спутник всех войн в истории человечества. В годы Второй мировой войны у каждого человека на фронте было своё место. Ю.В. Басистов, ныне полковник в отставке, кандидат исторических наук, воевал с врагом в составе седьмого отдела Ленинградского фронта и сражался не оружием - словом.

Некоторые фрагменты Библии подтверждаются историческими документами и археологическими находками. Но есть тексты Священного Писания, по поводу которых возникают сомнения: а не являются ли они просто красивыми легендами? Только научные исследования могут дать ответ на этот вопрос. Иногда, чтобы ответить на него, нужно восстанавливать эпоху и сопутствующие ей события по крупицам. К таким загадочным текстам относится и рассказ об Иосифе и его братьях.

Официально псевдоним Ленин у Владимира Ульянова появился в 1901 году. После того как Владимир Ильич возглавил революционное правительство, он стал подписывать документы так: «Владимир Ульянов (Ленин)».

Герман Геринг, ближайший соратник Адольфа Гитлера и шеф люфтваффе, был большим любителем и знатоком живописи. В коллекции произведений искусства в его замке Каринхалл хранились многие живописные полотна, в основном старых признанных мастеров. Немногие современные картины из коллекции Геринга были написаны в той же академической манере. Совсем не было только живописи авангардной: сюрреализма, абстракционизма и прочих «измов», к тому времени уже весьма популярных. Возможно, Геринг не отказался бы и от таких полотен, но позволить себе этого он не мог. Ведь , сам художник академического направления (см. «Тайны XX века», №33 за 2012 год), «измов» не любил и не одобрял. А так как фюрер часто навещал Каринхалл, полотна авангардистского толка были бы там неуместны.

Каждый старт в просторы Вселенной, а тем более целая программа - весьма недешёвое удовольствие. Понятно, что космический аппарат - это предмет законной национальной гордости для страны, создавшей и отправившей его к звёздам, показатель технического, научного и экономического потенциала державы. И, конечно, запуск ракеты-носителя сопровождают мечты и чаяния учёных, надежды, что полёт пройдёт хорошо. Ведь задачи, ради которых создавался дорогой во всех смыслах небесный посланник, должны, по возможности, успешно выполняться и даже перевыполняться. Но, оказывается, был в истории космонавтики случай, когда никто из узкого круга посвящённых особо на успех и не рассчитывал.

По русской традиции, праздник без песни - не праздник! В Новый год и взрослые, и дети традиционно напевают «В лесу родилась ёлочка». Но вот об авторе этой песни - мало кто знает.

По мнению психологов, азарт (эмоции, связанные с предвосхищением успеха) принадлежит к естественным чувствам человека. Подобное состояние свойственно и животным во время охоты. В такие минуты из-за выброса в кровь адреналина улучшается физическая и умственная деятельность, но при этом легко потерять контроль над собой. В Советском Союзе деятельность, связанную с азартными играми, государство пыталось жёстко контролировать — хотя получалось это далеко не всегда.

Мириады звёзд на ночном небе с глубочайшей древности привлекали внимание людей. Люди наделяли звезды особыми свойствами, им приписывали влияние на земные дела - например, египтяне верили, что Сириус управляет разливами Нила. Но при этом людям на Земле звёзды казались малыми небесными телами - много, много меньше, чем Луна. Лишь с появлением мощных телескопов люди осознали, что звезды - огромные светила, подобные Солнцу.

Красные сверхгиганты

Однако даже ближайшие звёзды так далеки от нас, что и в самые лучшие современные телескопы они видны только как светящиеся точки. Поэтому лишь в начале XX века учёные нашли способ вычислять действительный диаметр звёзд. Результаты исследований оказались поразительными - звёздное небо оказалось заселённым как карликами, так и гигантами. Так, диаметр звезды Бетельгейзе был измерен в 1920 году и оказался почти в 350 раз больше диаметра Солнца. Поверхность Бетельгейзе примерно в 120 тысяч раз больше его поверхности, а объём в 40 миллионов раз больше объёма нашего светила! Если бы Бетельгейзе оказалась на месте Солнца, она заполнила бы все пространство далеко за пределами орбиты Марса.

Но этот небесный исполин - далеко не самая большая звезда в безбрежных просторах космоса. Долгое время самой большой звездой считалась VY, которая находится в созвездии Большого Пса. Радиус этой звезды - миллиард километров, что в полторы тысячи раз больше радиуса Солнца. Представление о размерах этого колосса дают следующие расчёты: один оборот вокруг звёзды-гипергиганта займёт 1200 лет, и то если лететь со скоростью 800 километров в час. Если уменьшить Землю до 1 сантиметра в поперечнике и так же пропорционально уменьшить VY, то размер последней будет 2,2 километра. Правда, масса этой звезды «всего лишь» в 40 раз больше массы Солнца (это объясняется тем, что плотность звёзд-сверхгигантов очень низкая). Но зато светит VY в 500 тысяч раз сильнее нашего небесного светила.

Звёздная жизнь

Бетельгейзе и VY являются красными сверхгигантами. Как известно, звёзды формируются из космических скоплений водорода. Когда такое облако оказывается достаточно плотным, начинают действовать гравитационные силы, вызывающие сжатие и нагрев газа. По достижении определённого предела в нагретом и сжатом центре облака начинаются термоядерные реакции - это означает, что звезда зажглась. Во вспыхнувшем светиле водород превращается в гелий миллионы и даже миллиарды лет. Если звезда достаточно велика, наступает момент, когда в термоядерные реакции включаются углерод и кислород - звезда становится красным гигантом или сверхгигантом. Газовая оболочка такой звезды вырастает до огромных размеров, распространяясь на миллионы километров. Красные сверхгиганты обычно заканчивают жизненный путь взрывом сверхновой. Ведь существование звезды определяется равновесием между силами гравитации, стремящимися сжать звезду, и давлением излучения, «распирающим» её изнутри. Когда излучение оказывается недостаточным, чтобы компенсировать гравитационное поле звезды, происходит катастрофический коллапс светила. Гравитационное сжатие вызывает «взрыв внутрь» - процесс сопровождается выделением колоссального количества энергии.

Звезда становится сверхновой и на короткое время начинает сиять ярче, чем все звезды галактики, вместе взятые. Потом вспышка сверхновой заканчивается. Газовая оболочка погибшей звезды даёт начало новой туманности, а вырожденное ядро превращается в объект малой величины, но чудовищной плотности (это может быть белый карлик, нейтронная звезда или даже чёрная дыра).

Увы, но сверхгигант Бетельгейзе - близкий, по космическим меркам, сосед Солнечной системы (расположен примерно в полутысяче световых лет) достиг финальной стадии своей эволюции и может взорваться в самом скором времени. И этот катаклизм может быть опасен для Земли. Излучение сверхновой при взрыве направлено неравномерно - максимум излучения определяют магнитные полюса звезды. И если окажется, что один из полюсов Бетельгейзе направлен точно на Землю, то после взрыва сверхновой в нашу планету ударит смертоносный поток рентгеновского излучения…

Огромные и яркие

Но красные сверхгиганты далеко не самые тяжёлые и яркие звёзды. Чемпионами среди известных на сегодня звёзд являются голубые сверхгиганты. В отличие от красных, доживающих долгую жизнь, - это молодые и раскалённые звезды, в миллионы раз превосходящие Солнце своей яркостью и имеющие массу, превосходящую массу Солнца в десятки и сотни раз. Поверхность голубых сверхгигантов стремительно уменьшается из-за сжатия, при этом излучение внутренней энергии непрерывно растёт и повышает температуру светила. К этому классу звёзд относится ярчайшая звезда, достоверно известная учёным. Открытие произошло недавно: в 2010 году, изучая Большое Магелланово Облако, исследователи обнаружили звезду R136а1. Этот гигант в 256 раз больше нашего Солнца по своей массе!

Это значит, R136а1 весит 5×10 32 кг; или 500000000000000000000000000000 тонн! Эти данные стали откровением для учёных, ведь предполагалось, что звёзд, которые превышают массу Солнца больше чем в 150 раз, не существует. При этом R136а1 превосходит Солнце в десять миллионов раз по своей яркости! Звезда находится в Большом Магеллановом Облаке - карликовой галактике, которая вращается вокруг нашего Млечного Пути. Расстояние от Земли до туманности составляет невообразимую величину в 160 тысяч световых лет, поэтому исполинская звезда видна с помощью мощных телескопов. А если бы это удивительное светило находилось на месте одной из ближайших к солнечной системе звёзд, те сияние R136а1 превосходило бы сияние Солнца.

Впрочем, возможно, что R136а1 в скором времени уступит «чемпионский титул» загадочной двойной звезде R144, открытой в середине апреля 2013 года. R144 -это единая система из двух звёзд, вращающихся вокруг друг друга по близким орбитам, с полной массой компонентов около 300 солнечных масс. В недалёком будущем они могут слиться в единый объект, который окажется большей звездой, нежели нынешний рекордсмен (появившийся на свет, скорее всего, таким же образом).

Двойной звездой является и таинственный объект LBV 1806-20, чья яркость предположительно в 12 миллионов раз превосходит яркость Солнца (больше, чем у R136a1). Спрятанное за газом и пылью чудовищное светило класса LBV (яркая голубая переменная) имеет массу 130-190 масс Солнца. Эта сверхзвезда за 2-3 секунды излучает примерно столько же энергии, сколько Солнце за год. То, что LBV1806-20 и R144 - двойные звезды, - не случайно. Как показывают исследования, три четверти голубых сверхгигантов имеют близко расположенную звезду-спутник, а примерно треть из них находятся на пути к слиянию и образованию одной звезды (оставшаяся четверть «одиночных» голубых супергигантов - по-видимому, результат произошедшего в прошлом слияния звёзд). Поэтому такие звезды получили негласное название «звезды-вампиры» (главная из звёзд двойной системы «высасывает» вещество с поверхности своего соседа).

Чудовищно тяжёлые…

Однако хотя голубые сверхгиганты являются самыми яркими из известных науке звёзд, вопрос о самых тяжёлых звёздах остаётся открытым. Есть основания считать, что в космосе существуют «холодные» звезды такой массы, что R136a1 на их фоне окажется карликом. Интерес астрономов вызывает Эпсилон Возничего - звезда настолько холодная, что, несмотря на её чудовищные размеры, её не видно даже в самые мощные телескопы, так как её слабое излучение почти целиком лежит в инфракрасной области. Мы знаем о существовании этого «скрытого» светила только потому, что у него есть яркий спутник, который она периодически затмевает. Исходя из косвенных данных, учёные предположили, что таинственный «затмевающий» объект - это тёмная звезда - инфракрасный гигант с диаметром 4 миллиарда километров. Если эта гипотеза верна, то Эпсилон Возничего, оказавшись на месте Солнца, заполнила бы все пространство Солнечной системы вплоть до орбиты Урана!

Между тем невозможно сказать, каких размеров могут достигать инфракрасные сверхгиганты - ведь звезду настолько холодную, что она излучает почти исключительно в инфракрасной части спектра, очень трудно обнаружить. Несомненно, в глубинах космоса скрываются тёмные звезды гораздо больших размеров, чем Эпсилон Возничего, - и можно лишь гадать, каких максимальных размеров (и какой максимальной массы) они могут достигать.

Какая бы гипотеза ни была верна, несомненно, что в скором времени появятся новые рекордсмены среди звёзд - ведь учёные не устают осваивать пространство и делать все новые открытия. Кто знает, какие светила-левиафаны спрятаны в безбрежном космосе?

Voted Thanks!

Возможно Вам будет интересно:


Большие и маленькие, горячие и холодные, заряженные и не заряженные. В этой статье мы дадим классификацию основных видов звезд.

Одной из классификаций звезд является спектральная классификация . Согласно этой классификации звезды относят в тот или иной класс согласно их спектру. Спектральная классификация звезд служит многим задачам звездной астрономии и астрофизики. Качественное описание наблюдаемого спектра позволяет оценить важные астрофизические характеристики звезды, такие как эффективная температура ее поверхности, светимость и, в отдельных случаях, особенности химического состава.

Некоторые звезды не попадают ни в один из перечисленных спектров. Такие звезды называют пекулярными . Их спектры не укладываются в температурную последовательность O—B—A—F—G—K—M. Хотя зачастую такие звезды представляют собой определенные эволюционные стадии вполне нормальных звезд, либо представляют звезды, не совсем характерные для ближайших окрестностей (бедные металлами звезды, такие как звезды шаровых скоплений и гало ). В частности, к звездам с пекулярными спектрами относятся звезды с различными особенностями химического состава, что проявляется в усилении или ослаблении спектральных линий некоторых элементов.

Диаграмма Герцшпрунга-Рассела

Хорошо разобраться в классификации звезд позволяет диаграмма Герцшпрунга-Рассела. Она показывает зависимость между абсолютной звездной величиной, светимостью, спектральным классом и температурой поверхности звезды. Неожиданным является тот факт, что звезды на этой диаграмме располагаются не случайно, а образуют хорошо различимые участки. Диаграмма предложена в 1910 независимо друг от друга исследователями Э. Герцшпрунгом и Г. Расселом. Она используется для классификации звезд и соответствует современным представлениям о .

Большая часть звезд находится на так называемой главной последовательности . Существование главной последовательности связано с тем, что стадия горения водорода составляет ~90% времени эволюции большинства звезд: выгорание водорода в центральных областях звезды приводит к образованию изотермического гелиевого ядра, переходу к стадии красного гиганта и уходу звезды с главной последовательности. Относительно краткая эволюция красных гигантов приводит, в зависимости от их массы, к образованию белых карликов, нейтронных звезд или .

Желтый карлик


Находясь на различных стадиях своего эволюционного развития, звезды подразделяются на нормальные звезды, звезды карлики, звезды гиганты. Нормальные звезды, это и есть звезды главной последовательности. К таким, например, относится наше Солнце. Иногда такие нормальные звезды называются желтыми карликами .

Звезда может называться красным гигантом в момент звездообразования и на поздних стадиях развития. На ранней стадии развития звезда излучает гравитационную энергию, выделяющуюся при сжатии, до того момента пока сжатие не будет остановлено начавшейся термоядерной реакцией. На поздних стадиях эволюции звезд, после выгорания водорода в их недрах, звезды сходят с главной последовательности и перемещаются в область красных гигантов и сверхгигантов диаграммы Герцшпрунга-Рассела: этот этап длится ~ 10% от времени «активной» жизни звезд, то есть этапов их эволюции, в ходе которых в звездных недрах идут реакции нуклеосинтеза.

Звезды-гиганты

Звезда гигант имеет сравнительно низкую температуру поверхности, около 5000 градусов. Огромный радиус, достигающий 800 солнечных радиусов и за счет таких больших размеров огромную светимость. Максимум излучения приходится на красную и инфракрасную область спектра, потому их и называют красными гигантами.

Звезды карлики являются противоположностью гигантов и включают в себя несколько различных подвидов:

  • Белый карлик - проэволюционировавшие звезды с массой не превышающей 1,4 солнечных массы, лишенные собственных источников термоядерной энергии. Диаметр таких звезд может быть в сотни раз меньше солнечного, а потому плотность может быть в 1 000 000 раз больше плотности воды.
  • Красный карлик — маленькая и относительно холодная звезда главной последовательности, имеющая спектральный класс М или верхний К. Они довольно сильно отличаются от других звезд. Диаметр и масса красных карликов не превышает трети солнечной (нижний предел массы — 0,08 солнечной, за этим идут коричневые карлики).
  • Коричневый карлик — субзвездные объекты с массами в диапазоне 5—75 масс Юпитера (и диаметром примерно равным диаметру Юпитера), в недрах которых, в отличие от звезд главной последовательности, не происходит реакции термоядерного синтеза c превращением водорода в гелий.
  • Субкоричневые карлики или коричневые субкарлики — холодные формирования, по массе лежащие ниже предела коричневых карликов. Их в большей мере принято считать .
  • Черный карлик - остывшие и вследствие этого не излучающие в видимом диапазоне белые карлики. Представляет собой конечную стадию эволюции белых карликов. Массы черных карликов, подобно массам белых карликов, ограничиваются сверху 1,4 массами Солнца.

Кроме перечисленных, существует еще несколько продуктов эволюции звезд :

  • Нейтронная звезда . Звездные образования с массами порядка 1,5 солнечных и размерами, заметно меньшими белых карликов, порядка 10-20 км в диаметре. Плотность таких звезды может достигать 1000 000 000 000 плотностей воды. А магнитное поле во столько же раз больше магнитного поля земли. Такие звезды состоят в основном из нейтронов, плотно сжатых гравитационными силами. Часто такие звезды представляют собой .
  • Новая звезда . Звезды, светимость которых внезапно увеличивается в 10000 раз. Новая звезда представляет собой двойную систему, состоящую из белого карлика и звезды-компаньона, находящейся на главной последовательности. В таких системах газ со звезды постепенно перетекает на белый карлик и периодически там взрывается, вызываю вспышку светимости.
  • Сверхновая звезда - это звезда, заканчивающая свою эволюцию в катастрофическом взрывном процессе. Вспышка при этом может быть на несколько порядков больше чем в случае новой звезды. Столь мощный взрыв есть следствие процессов, протекающих в звезде на последней стадии эволюции.
  • Двойная звезда - это две гравитационно связанные звезды, обращающиеся вокруг общего центра масс. Иногда встречаются системы из трех и более звезд, в таком общем случае система называется кратной звездой. В тех случаях, когда такая звездная система не слишком далеко удалена от Земли, в