Типы ядерных превращений, альфа и бета-распад. Как изменится массовое число при распаде Условия возникновения реакции

Накопители тяжелых ионов открывают принципиально новые возможности в исследовании свойств экзотических ядер. В частности, они позволяют накапливать и в течение длительного времени использовать полностью ионизованные атомы – «голые» ядра. В результате становится возможным исследовать свойства атомных ядер, у которых нет электронного окружения и в которых отсутствует кулоновское воздействие внешней электронной оболочкис атомным ядром.

Рис. 3.2 Схема e-захвата в изотопе (слева) и полностью ионизованных атомах и (справа)

Распад на связанное состояние атома был впервые обнаружен в 1992 г. Наблюдался β - -распад полностью ионизованного атома на связанные атомные состояния . Ядро 163 Dy на N-Z диаграмме атомных ядер помечено черным цветом. Это означает, что оно является стабильным ядром. Действительно, входя в состав нейтрального атома, ядро 163 Dy стабильно. Его основное состояние (5/2 +) может заселятся в результате e-захвата из основного состояния (7/2 +) ядра 163 Ho. Ядро 163 Ho, окруженное электронной оболочкой,β - -радиоактивно и его период полураспада составляет ~10 4 лет. Однако это справедливо только если рассматривать ядро в окружении электронной оболочки. Для полностью ионизированных атомов картина принципиально другая. Теперь основное состояние ядра 163 Dy оказывается по энергии выше основного состояния ядра 163 Ho и открывается возможность для распада 163 Dy (рис. 3.2)

→ + e - + e . (3.8)

Образующийся в результате распада электрон может быть захвачен на вакантную К или L-оболочку иона . В результате распад (3.8) имеет вид

→ + e - + e (в связанном состоянии).

Энергии β-распадов на K и L-оболочки равны соответственно (50.3±1) кэВ и (1.7±1) кэВ. Для наблюдения распада на связанные состояния K- и L-оболочки в накопительном кольце ESR в GSI было накоплено 10 8 полностью ионизированных ядер . В течение времени накопления в результате β + -распада образовывались ядра (рис. 3.3).


Рис. 3.3. Динамика накопления ионов: а - ток накопленных в накопительном кольце ESR ионов Dy 66+ во время разных стадий эксперимента, β- интенсивности ионов Dy 66+ и Ho 67+ , измеренные внешним и внутренним позиционно-чувствительными детекторами соответственно

Так как ионы Ho 66+ имеют практически то же отношение M/q, что и ионы первичного пучка Dy 66+ , они накапливаются на одной и той же орбите. Время накопления составляло ~ 30 мин. Для того, чтобы измерить период полураспада ядра Dy 66+ , накопленный на орбите пучок было необходимо очистить от примеси ионов Ho 66+ . Для очистки пучка от ионов в камеру инжектировалась аргоновая газовая струя плотностью 6·10 12 атом/см 2 , диаметром 3 мм, которая пересекала накопленный пучок ионов в вертикальном направлении. За счет того, что ионыHo 66+ захватывали электроны, они выбывали с равновесной орбиты. Очистка пучка проходила в течение приблизительно 500 с. После чего газовая струя перекрывалась и в кольце продолжали циркулировать ионы Dy 66+ и вновь образовавшиеся (после выключения газовой струи) в результате распада ионы Ho 66+ . Продолжительность этого этапа менялась от 10 до 85 мин. Детектирование и идентификация Ho 66+ базировались на том, что Ho 66+ можно еще сильнее ионизировать. Для этого на последнем этапе в накопительное кольцо снова инжектировалась газовая струя. Происходило обдирание последнего электрона с иона 163 Ho 66+ и в результате получался ион 163 Ho 67+ . Рядом с газовой струей располагался позиционно-чувствительный детектор, которым регистрировались выбывающие из пучка ионы 163 Ho 67+ . На рис. 3.4 показана зависимость числа образующихся в результате β-распада ядер 163 Ho от времени накопления. На вставке показано пространственное разрешение позиционно-чувствительного детектора.
Таким образом, накопление в пучке 163 Dy ядер 163 Ho явилось доказательством возможности распада

→ + e - + e (в связанном состоянии).


Рис. 3.4. Отношение дочерних ионов 163 Ho 66+ к первичным 163 Dy 66+ в зависимости от времени накопления. На врезке пик 163 Ho 67+ , зарегистрированный внутренним детектором

Варьируя интервал времени между очисткой пучка от примеси Ho 66+ и временем регистрации вновь образующихся в пучке примеси ионов Ho 66+ , можно измерить период полураспада полностью ионизированного изотопа Dy 66+ . Оно оказалось равным ~0.1 года.
Аналогичный распад был обнаружен и для 187 Re 75+ . Полученный результат крайне важен для астрофизики. Дело в том, что нейтральные атомы 187 Re имеют период полураспада 4·10 10 лет и используются как радиоактивные часы. Период полураспада 187 Re 75+ составляет всего 33±2 года. Поэтому в астрофизические измерения необходимо вносить соответствующие поправки, т.к. в звездах 187 Re чаще всего находится в ионизированном состоянии.
Изучение свойств полностью ионизованных атомов открывает новое направление исследований экзотических свойств ядер, лишенных кулоновского воздействия внешней электронной оболочки.

Альфа-распад (а-распад) - вид радиоактивного распада атомных ядер, когда испускается альфа-частица, заряд ядра уменьшается на 2 единицы, массовое число - на 4. Альфа-распад характерен для радиоактивных элементов с большим атомным номером Z.

Рис. 1. Схематическое изображение а-распада.

Альфа-распадом называется самопроизвольное превращение атомного ядра с числом протонов Z и нейтронов N в другое (дочернее) ядро, содержащее число протонов Z -2 и нейтронов N- 2. При этом испускается а-частица - ядро атома гелия 4//^+ .

При а-распаде исходного ядра атомный номер образовавшегося ядра уменьшается на две единицы, а массовое число уменьшается на 4 единицы, согласно схеме:

Примерами а-распада могут служить распад изотопа урана-238:

(при этом распаде ядро тория и а-частица разлетаются с кинетическими энергиями 0.07 МэВ и 4.18 МэВ) и радия-226:

Здесь проявляется правило сдвига, сформулированное Фаянсом и Содди: элемент, образовавшийся из другого элемента при испускании а-лучей, занимает в периодической системе место на две группы левее исходного элемента.

Степень неустойчивости ядер характеризуется величиной периода полураспада - промежутка времени, в течение которого распадается половина ядер данного радиоактивного изотопа. Большинство радиоактивных изотопов имеет сложные схемы распада. В таких случаях на схемах указывают процент данного вида излучения по отношению к общему числу переходов (рис. 1 и 2).

Рис. 2. Схема распада 230 Th.

Полная энергия а-распада:

где Е а - энергия а-частицы, Е тл - энергия атома отдачи и Я„шб - энергия возбуждения дочернего ядра.

Для более лёгких чётночётных нуклидов (Л

Кинетическая энергия а-частиц при альфа-распаде (Е и) определяется массами исходного и конечного ядра и а-частицы. Эта энергия может несколько уменьшаться, если конечное ядро образуется в возбуждённом состоянии и, напротив, несколько увеличиваться, если возбуждённым было испускающее а-частицу ядро (такие а-частицы с увеличенной энергией называются длиннопробежными). Однако во всех случаях энергия а-распада всегда связана с разностью масс и уровнями возбуждения исходного и конечного ядер, а потому спектр испускаемых а-частиц всегда является не сплошным, а линейчатым.

Энергия, выделившаяся при а-распаде

где Ма и М А -4 - массы материнского и дочернего ядер, М а - масса а-частицы. Энергия Е делится между а-частицей и дочерним ядром обратно пропорционально их массам, откуда энергия а-частиц:

Энергия отдачи:

Энергия отдачи дочернего ядра обычно находится в области о,1 МэВ, что соответствует длине пробега в воздухе, равной нескольким миллиметрам.

В земных условиях существует около 40 а-радиоактивных изотопов. Они объединены в три радиоактивных ряда, которые начинаются с 2 3 6 U (А = 477), 2 3 8 U = 477+2), 2 35U (А = 477+3). К ним можно условно (т.к. изотопы этого ряда успели распасться за время существования Земли), отнести четвёртый ряд, который начинается с 2 3?Np (Л = 477+1). После ряда последовательных распадов образуются стабильные ядра с близким или равным магическим числам количеством протонов и нейтронов (Z=82, N=126) соответственно 2o8 Pb, 2o6 Pb, 2 ° 7 РЬ, 2 °9Bi. Времена жизни «-активных ядер лежат в пределах от ю 17 лет (2 °4РЬ) до 3-ю* 7 с (212 Ро). Долгоживущими являются нуклиды и 2 Се, *44Ne, 17 4Hf, периоды полураспада которых составляют

(2+5) 10*5 лет.

Рис. 3. Плоские пучки а-лучей от источника малых размеров: а - источник 210 Ро, одна группа а-лучей; б - источник 227 Th, две группы с близкими по длине пробегами; в - источник 2u Bi+ 2n Po, видны две а-частицы 211Р0; г - источник ~ 8 Th с продуктами его распада ^Ra, 2 3-Th, 21б Ро, 212 Bi+ 212 Po 6 групп.

Альфа-распад возможен, если энергия связи а-частицы относительно материнского ядра отрицательна. Для того, чтобы ядро было а-радиоактивным необходимо выполнение условия, являющегося следствием закона сохранения энергии

М(А?) >М(Л-4^-2) + М а, (9)

где M(A,Z) и М(А- 4,Z-2) - массы покоя исходного и конечного ядер соответственно, М а - масса а-частицы. При этом в результате распада конечное ядро и а-частица приобретают суммарную кинетическую энергию Е.

Кинетические энергии а-частиц изменяются от 1,83 МэВ (*44Nd) до 11,65 МэВ (изомер 212ш Ро). Энергия а-частиц, испускаемых тяжёлыми рами из основных состояний, составляет 4+9 МэВ, а испускаемая ми редкоземельных элементов 2+4.5 МэВ. Пробег а-частицы с типичной энергией Е а =6 МэВ составляет -5 см в воздухе при нормальных условиях и ~о,05 мм в А1.

Рис. 4. Экспериментальный а- спектр изотопов плутония.


Спектра -частиц, возникающих при распаде материнского ядра, часто состоит из нескольких моно- энергетических линий, соответствующих квантовых переходам на различные энергетические уровни дочернего ядра.

Так как а-частица не имеет спина, правила отбора по моменту количества движения I-L и чётности, которые вытекают из соответствующих законов сохранения, оказываются простыми. Угловой момент L or-частицы может принимать значения в интервале:


где /, и If - угловые моменты начального и конечного состояния ядер (материнского и дочернего). При этом разрешены только чётные значения L, если чётности обоих состояний совпадают, и нечётные, если четности не совпадают.

Рис. 5. Зависимость lgТ от Е а " 1/2 для чётно-чётных изотопов полония, радона и радия.

Свойством а-распада является наличие определённой и притом весьма сильной зависимости между энергией испускаемых «-частиц и периодом полураспада «-радиоактивных ядер. При небольшом изменении энергии а-частиц периоды полураспада (Т) меняются на многие порядки. Так у 2 з 2 ТЪ?„=4.08 МэВ, 7=1.41 10 ю л, а у 2l8 Th Е а = 9.85 МэВ, Т =ю мкс. Изменению энергии в два раза соответствует изменение в периоде полураспада на 24 порядка.

Для чётно-чётных изотопов одного элемента зависимость периода полураспада от энергии а-распада хорошо описывается соотношением (закон Гейгера-Неттолла):

где Ci и с 2 - константы, слабо зависящие от Z.

Для постоянной распада закон Гейгера-Нетолла имеет вид:

где binb 2 - константы, причём b 2 - общая, а Ь - индивидуальная для каждого природного ряда, R - длина пробега а-частицы в воздухе, Е а - энергия а-частицы.

Зависимость подобного рода была эмпирически установлена в 1912 г. Г.Гейгером и Дж.Нетоллом и теоретически обоснована в 1928 г. Г.Гамовым в результате квантовомеханического рассмотрения процесса а-распада, происходящего путём туннельного перехода. Теория хорошо описывает переходы между основными состояниями чётно-чётных ядер. Для нечётно-чётных, чётно-нечётных и нечётно-нечётных ядер общая тенденция сохраняется, но их периоды полураспада в 2-1000 раз больше, чем для чётно-чётных ядер с данными Z и Е а.

Распространённость а-радиоактивности в значительной мере определяется именно сильной зависимостью времени жизни таких ядер от энергии их распада. Эта энергия положительна, если период полураспада находится в пределах кг 12 секТ=ю 1в лет активность 1 г изотопа с А =200 составляет всего 1,810 м2 Ки).

Для изотопов элементов с Z

Известно более 200 a-активных ядер, расположенных в основном в конце периодической системы, за свинцом (Z>82), которым заканчивается заполнение протонной ядерной оболочки с Z=82. Альфа-распад связан с

кулоновским отталкиванием, которое возрастает по мере увеличения размеров ядер быстрее (как Z 2), чем ядерные силы притяжения, которые увеличиваются линейно с ростом массового числа А.

Рис. 6. Зависимость энергии а-распада изотопов элементов начиная с полония (Z=84) до фермия (Z=ioo) от числа нейтронов в ядрах.

Имеется также около 20 а-радиоактивных изотопов редкоземельных элементов (A=i40-ri6o). Здесь а-распад наиболее характерен для ядер с N= 84, которые при испускании а-частиц превращаются в ядра с заполненной нейтронной оболочкой (N= 82). Существует также небольшая группаа -излучателей в промежутке между редкоземельными и тяжелыми ядрами и есть несколько а- излучающих нейтронно-дефицитных ядер с А~по.

Времена жизни a-активных ядер колеблются в широких пределах: от 3-10-" сек (для 2,2 Ро) до (2-5)-10*5 л (природные изотопы ‘4 2 Се, *44Nd, WHO. Энергия а-распада лежит в пределах 44-9 МэВ (за исключением случая длиннопробежных а-частиц) для всех тяжёлых ядер и 24-4,5 МэВ для редкоземельных элементов. Сводка данных об энергиях а-распада а-радиоактивных изотопов элементов с Z= 84-100 представлена на рис. 6.

В теории а-распада предполагается, что материнское ядро является для а -частиц потенциальной ямой, которая ограничена потенциальным барьером. Энергия а-частицы в ядре недостаточна для преодоления этого барьера. Вылет а-частицы из ядра оказывается возможным только благодаря квантово-механическому явлению, которое называется туннельным эффектом. Согласно квантовой механике, существуют отличная от нуля вероятность прохождения частицы сквозь потенциальный барьер. Явление туннелирования имеет вероятностный характер.

Туннельный эффект (туннелирование) - преодоление микрочастицей потенциального барьера в случае, когда её полная энергия (остающаяся при туннелировании неизменной) меньше высоты барьера. Туннельный эффект - явление квантовой природы, невозможное в классической механике; аналогом туннельного эффекта в волновой оптике может служить проникновение световой волны внутрь отражающей среды в условиях, когда, с точки зрения геометрической оптики, происходит полное внутреннее отражение. Явление туннельного эффекта лежит в основе многих важных процессов в атомной и молекулярной физике, в физике атомного ядра, твёрдого тела и т.д. В конечном счёте, туннелирование объясняется соотношением неопределенностей.

Рис. 7.

Основным фактором, определяющим вероятность а-распада и ее зависимость от энергии а-частицы и заряда ядра, является кулоновский барьер. Простейшая теория а-распада сводится к описанию движения а-частицы в потенциальной яме с барьером (рис. 7). Так как энергия а-частиц составляет 5-гю МэВ, а высота кулоновского барьера у тяжёлых ядер 254-30 МэВ, то вылет а-частицы из ядра может происходить только за счёт туннельного эффекта, вероятность которого определяется проницаемостью барьера. Вероятность а-распада экспоненциально зависит от энергии а-частицы.

На рис. 7 показана зависимость потенциальной энергии взаимодействия а-частицы с остаточным ядром в зависимости от расстояния между их центрами. Кулоновский потенциал обрезается на расстоянии R, которое приблизительно равно радиусу остаточного ядра. Высота кулоновского барьера прямо пропорциональна заряду ядра, заряду а-частицы и обратно пропорциональна R=r (A 1/s , г 0 - радиус ядра. Она довольно значительна, например, для 2 з**и кулоновский барьер имеет высоту 30 МэВ, поэтому согласно классическим представлениям, а-частица с энергией 4,5 МэВ такой барьер преодолеть не может. Однако благодаря своим волновым свойствам, а-частица такой барьер всё же преодолевает.

На энергетической диаграмме ядра можно выделить три области:

i" - сферическая потенциальная яма глубиной V. В классической механике а-частица с кинетической энергией E a +V 0 может двигаться в этой области, но не способна её покинуть. В этой области существует сильное взаимодействие между а-частицей и остаточным ядром.

R область потенциального барьера, в которой потенциальная энергия больше энергии а-частицы, т.е. это область, запрещённая для классической частицы.

7*>г е - область вне потенциального барьера. В квантовой механике возможно прохождение а-частицы сквозь барьер (туннелирование), однако вероятность этого весьма мала.

Теория туннелирования Гамова объяснила сильную зависимость периода полураспада а-излучающих нуклидов от энергии а-частицы. Однако величины периодов полураспада для многих ядер были предсказаны с большими погрешностями. Поэтому теория Гамова неоднократно усовершенствовалась. Была учтена, как возможность распада ядер с ненулевым орбитальным моментом, так и сильная деформация ядер (а-частицы охотнее вылетают вдоль большой оси эллипсоида, а средняя вероятность вылета отличается от таковой для сферического ядра) и т.п. В теории Гамова не учитывались структура состояний начального и конечного ядер и проблема образования а-частицы в ядре, вероятность которой полагалась равной 1. Для чётно-чётных ядер это приближение довольно хорошо описывает эксперимент. Однако если перестройка структуры исходных ядер в конечные заметно затруднена, то расчётные значения периодов полураспада могут измениться на два порядка.

Альфа-частица не существует в а-распадающемся ядре всё время, а с некоторой конечной вероятностью возникает на его поверхности перед вылетом. В поверхностном слое тяжёлых ядер существуют а-частичные группировки нуклонов, состоящие из двух протонов и двух нейтронов (a-кластеры). Известно, что а-распад идёт на 2-^4 порядка быстрее, когда а-частица образуется из нейтронных и протонных пар, по сравнению с распадом, когда а-частица образуется из неспаренных нуклонов. В первом случае а-распад называется благоприятным, и такими оказываются все a-переходы между основными состояниями чётно-чётных ядер. Во втором случае а-распад называется неблагоприятным.

Бета-распад

β-распад, радиоактивный распад атомного ядра, сопровождающийся вылетом из ядра электрона или позитрона. Этот процесс обусловлен самопроизвольным превращением одного из нуклонов ядра в нуклон другого рода, а именно: превращением либо нейтрона (n) в протон (p), либо протона в нейтрон. В первом случае из ядра вылетает электрон (е -) - происходит так называемый β - -распад. Во втором случае из ядра вылетает позитрон (е +) - происходит β + -распад. Вылетающие при Б.-р. электроны и позитроны носят общее название бета-частиц. Взаимные превращения нуклонов сопровождаются появлением ещё одной частицы - нейтрино (ν ) в случае β+-распада или антинейтрино А, равное общему числу нуклонов в ядре, не меняется, и ядропродукт представляет собой изобар исходного ядра, стоящий от него по соседству справа в периодической системе элементов. Наоборот, при β + -распаде число протонов уменьшается на единицу, а число нейтронов увеличивается на единицу и образуется изобар, стоящий по соседству слева от исходного ядра. Символически оба процесса Б.-р. записываются в следующем виде:

где -Z нейтронов.

Простейшим примером (β - -распада является превращение свободного нейтрона в протон с испусканием электрона и антинейтрино (период полураспада нейтрона ≈ 13 мин ):

Более сложный пример (β - -распада - распад тяжёлого изотопа водорода - трития, состоящего из двух нейтронов (n) и одного протона (p):

Очевидно,что этот процесс сводится к β - -распаду связанного (ядерного) нейтрона. В этом случае β-радиоактивное ядро трития превращается в ядро следующего в периодической таблице элемента - ядро лёгкого изотопа гелия 3 2 Не.

Примером β + -распада может служить распад изотопа углерода 11 С по следующей схеме:

Превращение протона в нейтрон внутри ядра может происходить и в результате захвата протоном одного из электронов с электронной оболочки атома. Чаще всего происходит захват электрона

Б.-р. наблюдается как у естественно-радиоактивных, так и у искусственно-радиоактивных изотопов. Для того чтобы ядро было неустойчиво по отношению к одному из типов β-превращения (т. е. могло испытать Б.-р.), сумма масс частиц в левой части уравнения реакции должна быть больше суммы масс продуктов превращения. Поэтому при Б.-р. происходит выделение энергии. Энергию Б.-р. Е β можно вычислить по этой разности масс, пользуясь соотношением Е = mc2, где с - скорость света в вакууме. В случае β-распада

где М - массы нейтральных атомов. В случае β+-распада нейтральный атом теряет один из электронов в своей оболочке, энергия Б.-р. равна:

где me - масса электрона.

Энергия Б.-р. распределяется между тремя частицами: электроном (или позитроном), антинейтрино (или нейтрино) и ядром; каждая из лёгких частиц может уносить практически любую энергию от 0 до E β т. е. их энергетические спектры являются сплошными. Лишь при К-захвате нейтрино уносит всегда одну и ту же энергию.

Итак, при β - -распаде масса исходного атома превышает массу конечного атома, а при β + -распаде это превышение составляет не менее двух электронных масс.

Исследование Б.-р. ядер неоднократно ставило учёных перед неожиданными загадками. После открытия радиоактивности явление Б.-р. долгое время рассматривалось как аргумент в пользу наличия в атомных ядрах электронов; это предположение оказалось в явном противоречии с квантовой механикой (см. Ядро атомное). Затем непостоянство энергии электронов, вылетающих при Б.-р., даже породило у некоторых физиков неверие в закон сохранения энергии, т.к. было известно, что в этом превращении участвуют ядра, находящиеся в состояниях с вполне определённой энергией. Максимальная энергия вылетающих из ядра электронов как раз равна разности энергий начального и конечного ядер. Но в таком случае было непонятно, куда исчезает энергия, если вылетающие электроны несут меньшую энергию. Предположение немецкого учёного В. Паули о существовании новой частицы - нейтрино - спасло не только закон сохранения энергии, но и другой важнейший закон физики - закон сохранения момента количества движения. Поскольку Спин ы (т. е. собственные моменты) нейтрона и протона равны 1 / 2 , то для сохранения спина в правой части уравнений Б.-р. может находиться лишь нечётное число частиц со спином 1 / 2 . В частности, при β - -распаде свободного нейтрона n → p + e - + ν только появление антинейтрино исключает нарушение закона сохранения момента количества движения.

Б.-р. имеет место у элементов всех частей периодической системы. Тенденция к β-превращению возникает вследствие наличия у ряда изотопов избытка нейтронов или протонов по сравнению с тем количеством, которое отвечает максимальной устойчивости. Т. о., тенденция к β + -распаду или К-захвату характерна для нейтронодефицитных изотопов, а тенденция к β - -распаду - для нейтроноизбыточных изотопов. Известно около 1500 β-радиоактивных изотопов всех элементов периодической системы, кроме самых тяжёлых (Z ≥ 102).

Энергия Б.-р. ныне известных изотопов лежит в пределах от

периоды полураспада заключены в широком интервале от 1,3 · 10 -2 сек (12 N) до Бета-распад 2 10 13 лет (природный радиоактивный изотоп 180 W).

В дальнейшем изучение Б.-р. неоднократно приводило физиков к крушению старых представлений. Было установлено, что Б.-р. управляют силы совершенно новой природы. Несмотря на длительный период, прошедший со времени открытия Б.-р., природа взаимодействия, обусловливающего Б.-р., исследована далеко не полностью. Это взаимодействие назвали «слабым», т.к. оно в 10 12 раз слабее ядерного и в 10 9 раз слабее электромагнитного (оно превосходит лишь гравитационное взаимодействие; см. Слабые взаимодействия). Слабое взаимодействие присуще всем элементарным частицам (См. Элементарные частицы) (кроме фотона). Прошло почти полвека, прежде чем физики обнаружили, что в Б.-р. может нарушаться симметрия между «правым» и «левым». Это несохранение пространственной чётности было приписано свойствам слабых взаимодействий.

Изучение Б.-р. имело и ещё одну важную сторону. Время жизни ядра относительно Б.-р. и форма спектра β-частиц зависят от тех состояний, в которых находятся внутри ядра исходный нуклон и нуклон-продукт. Поэтому изучение Б.-р., помимо информации о природе и свойствах слабых взаимодействий, значительно пополнило представления о структуре атомных ядер.

Вероятность Б.-р. существенно зависит от того, насколько близки друг к другу состояния нуклонов в начальном и конечном ядрах. Если состояние нуклона не меняется (нуклон как бы остаётся на прежнем месте), то вероятность максимальна и соответствующий переход начального состояния в конечное называется разрешённым. Такие переходы характерны для Б.-р. лёгких ядер. Лёгкие ядра содержат почти одинаковое число нейтронов и протонов. У более тяжёлых ядер число нейтронов больше числа протонов. Состояния нуклонов разного сорта существенно отличны между собой. Это затрудняет Б.-р.; появляются переходы, при которых Б.-р. происходит с малой вероятностью. Переход затрудняется также из-за необходимости изменения спина ядра. Такие переходы называются запрещёнными. Характер перехода сказывается и на форме энергетического спектра β-частиц.

Экспериментальное исследование энергетического распределения электронов, испускаемых β-радиоактивными ядрами (бета-спектра), производится с помощью Бета-спектрометр ов. Примеры β-спектров приведены на рис. 1 и рис. 2 .

Лит.: Альфа-, бета- и гамма-спектроскопия, под ред. К. Зигбана, пер. с англ., в. 4, М., 1969, гл. 22-24; Экспериментальная ядерная физика, под ред. Э. Сегре, пер. с англ., т. 3, М., 1961.

Е. М. Лейкин.

Бета-спектр нейтрона. На оси абсцисс отложена кинетич. энергия электронов Е в кэв , на оси ординат - число электронов N (Е) в относительных единицах (вертикальными чёрточками обозначены пределы ошибок измерений электронов с данной энергиией).


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Бета-распад" в других словарях:

    Бета распад, радиоактивные превращения атомных ядер, в процессе к рьхх ядра испускают электроны и антинейтрино (бета распад) либо позитроны и нейтрино (бета+ распад). Вылетающие при Б. р. электроны и позитроны носят общее назв. бета частиц. При… … Большой энциклопедический политехнический словарь

    Современная энциклопедия

    Бета-распад - (b распад), вид радиоактивности, при котором распадающееся ядро испускает электроны или позитроны. При электронном бета распаде (b) нейтрон (внутриядерный или свободный) превращается в протон с испусканием электрона и антинейтрино (смотри… … Иллюстрированный энциклопедический словарь

    Бета-распад - (β распад) радиоактивные превращения атомных ядер, в процессе которых ядра испускают электроны и антинейтрино (β распад) либо позитроны и нейтрино (β+ распад). Вылетающие при Б. р. электроны и позитроны носят общее название бета частиц (β частиц) … Российская энциклопедия по охране труда

    - (b распад). самопроизвольные (спонтанные) превращения нейтрона n в протон р и протона в нейтрон внутри ат. ядра (а также превращение в протон свободного нейтрона), сопровождающиеся испусканием эл на е или позитрона е+ и электронных антинейтрино… … Физическая энциклопедия

    Самопроизвольные превращения нейтрона в протон и протона в нейтрон внутри атомного ядра, а также превращение свободного нейтрона в протон, сопровождающееся испусканием электрона или позитрона и нейтрино или антинейтрино. двойной бета распад… … Термины атомной энергетики

    - (см. бета) радиоактивное превращение атомного ядра, при котором испускаются электрон и антинейтрино или позитрон, и нейтрино; при бета распаде электрический заряд атомного ядра изменяется на единицу, массовое число не меняется. Новый словарь… … Словарь иностранных слов русского языка

    бета-распад - бета лучи, бета распад, бета частицы. Первая часть произносится [бэта] … Словарь трудностей произношения и ударения в современном русском языке

    Сущ., кол во синонимов: 1 распад (28) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    Бета распад, бета распада … Орфографический словарь-справочник

    БЕТА-РАСПАД - (ß распад) радиоактивное превращение атомного ядра (слабое взаимодействие), при котором испускаются электрон и антинейтрино или позитрон и нейтрино; при Б. р. электрический заряд атомного ядра изменяется на единицу, массовое (см.) не меняется … Большая политехническая энциклопедия

Книги

  • О проблемах излучения и вещества в физике. Критический анализ существующих теорий: метафизичность квантовой механики и иллюзорность квантовой теории поля. Альтернатива - модель мерцающих частиц , Петров Ю.И. , Книга посвящена анализу проблем единства и противостояния понятий "волна" и"частица" . В поисках решения этих проблем тщательно анализировались математические основы фундаментальных… Категория:

Согласно современным химическим представлениям, элемент – это вид атомов с одним и тем же зарядом ядра, который отражен в порядковом номере элемента в таблице Д.И. Менделеева. Изотопы могут отличаться количеством нейтронов и, соответственно, атомной массой, но поскольку число положительно заряженных частиц - протонов - одинаково, важно понимать, что речь идет об одном и том же элементе.

Протон имеет массу 1,0073 а.е.м. (атомные единицы массы) и заряд +1. За единицу электрического заряда принят заряд электрона. Масса электронейтрального нейтрона – 1,0087 а.е.м. Чтобы обозначить изотоп, необходимо указать его атомную массу, которая складывается из всех протонов и нейтронов, и заряд ядра (число протонов или, что то же самое, порядковый номер). Атомную массу, называемую также нуклонным числом или нуклоном, записывают обычно слева сверху от символа элемента, а порядковый номер – слева снизу.

Аналогичная форма записи используется и для элементарных частиц. Так, β-лучам, представляющим собой электроны и имеющим пренебрежительно малую массу, приписывают заряд -1 (снизу) и массовое число 0 (сверху). α-частицы – это положительные двухзарядные ионы гелия, поэтому их обозначают символом «He» с зарядом ядра 2 и массовым числом 4. Относительные массы протона p n приняты за 1, а их заряды, соответственно, равны 1 и 0.

Изотопы элементов обычно не имеют отдельных названий. Исключение составляет лишь водород: его изотоп с массовым числом 1 – это протий, 2 – дейтерий, 3 – тритий. Введение специальных наименований вызвано тем, что изотопы водорода максимально отличаются друг от друга по массе.

Изотопы: стабильные и радиоактивные

Изотопы стабильными и радиоактивными. Первые не подвергаются распаду, поэтому сохраняются в природе в первозданном виде. Примеры стабильных изотопов – кислород с атомной массой 16, углерод с атомной массой 12, фтор с атомной массой 19. Большинство природных элементов – это смесь нескольких стабильных изотопов.

Виды радиоактивного распада

Радиоактивные изотопы, естественные и искусственные, самопроизвольно распадаются с испусканием α- или β-частиц до образования стабильного изотопа.

Говорят о трех видах самопроизвольных ядерных превращений: α-распаде, β-распаде и γ-распаде. При α-распаде ядро испускает α-частицу, состоящую из двух протонов и двух нейтронов, в результате чего массовое число изотопа уменьшается на 4, а заряд ядра – на 2. Так, например, радий распадается на радон и ион гелия:

Ra(226, 88)→Rn(222, 86)+He(4, 2).

В случае β-распада нейтрон в неустойчивом ядре превращается в протон, и ядро испускает β-частицу и антинейтрино. Массовое число изотопа при этом не изменяется, но заряд ядра возрастает на 1.

При γ-распаде возбужденное ядро испускает γ-излучение с малой длиной волны. Энергия ядра при этом уменьшается, но заряд ядра и массовое число остаются неизменными.

В соответствии с видами радиоактивных излучений существуют несколько видов радиоактивного распада (типов радиоактивных превращений). Радиоактивному превращению подвергаются элементы, в ядрах которых слишком много протонов или нейтронов. Рассмотрим виды радиоактивного распада.


1. Альфа-распад характерен для естественных радиоактивных элементов с большим порядковым номером (т.е. с малыми энергиями связи). Известно около 160 альфа-активных видов ядер, в основном порядковый номер их более 82 (Z > 82). Альфа-распад сопровождается испусканием из ядра неустойчивого элемента альфа-частицы, которая представляет собой ядро атома гелия Не (в его составе 2 протона и 2 нейтрона). Заряд ядра уменьшается на 2, массовое число - на 4.


ZАХ → Z-2 А-4 У + 2 4Не; 92 238U →24 Не + 90 234Th;


88 226Ra→2 4He + 86 222Ra + γ изл.


Альфа - распад подвергается более 10% радиоактивных изотопов.


2. Бета-распад. Ряд естественных и искусственных радиоактивных изотопов претерпевают распад с испусканием электронов или позитронов:


а) Электронный бета-распад. характерен как для естественных, так и для искусственных радионуклидов, которые имеют излишек нейтронов (т.е. в основном для тяжелых радиоактивных изотопов). Электронному бета-распаду подвергается около 46% всех радиоактивных изотопов. При этом один из нейтронов превращается в , а ядро испускает и антинейтрино. Заряд ядра и соответственно атомный номер элемента при этом увеличивается на единицу, а массовое число остается без изменения.


АZ Х → АZ+1 У + е- + v-; 24194Pu→24195Am + e- + v-; 6429Cu → 6430Zn + e- + v-; 4019K → 4020Ca + e- + v-.


При испускании β-частиц ядра атомов могут находиться в возбужденном состоянии, когда в дочернем ядре обнаруживается избыток энергии, которая не захвачена корпускулярными частицами. Этот излишек энергии высвечивается в виде гамма-квантов.


13785Cs → 13756 Ва + е -+ v- + γ изл.;


б) позитронный бета-распад. Наблюдается у некоторых искусственных радиоактивных изотопов, у которых в ядре имеется излишек протонов. Он характерен для 11% радиоактивных изотопов, находящихся в первой половине таблицы Д.И.Менделеева (Z<45). При позитронном бета-распаде один из протонов превращается в , заряд ядра и соответственно атомный номер уменьшается на единицу, а массовое число остается без изменений. Ядро испускает позитрон и нейтрино.


AZX → AZ-1У + е+ + v+; 3015P → 3014Si + e+ + v+; 6428Ni + e+ + v+.


Позитрон, вылетев из ядра, срывает с оболочки атома «лишний» или взаимодействует со свободным электроном, образуя пару «позитрон-электрон», которая мгновенно превращается в два гамма-кванта с энергией, эквивалентной массе частиц (е и е). Процесс превращения пары «позитрон-электрон» в два гамма-кванта получил название аннигиляции (уничтожения), а возникающее электромагнитное излучение - аннигиляционного. В данном случае происходит превращение одной формы материи (частиц вещества) в другую - гамма-фотоны;


в) электронный захват. Это такой вид радиоактивного превращения, когда ядро атома захватывает электрон из ближайшего к ядру энергетического К-уровня (электронный К-захват) или реже в 100 раз - из L уровня. В результате один из протонов ядра нейтрализуется электроном, превращаясь в . Порядковый номер нового ядра становится на единицу меньше, а массовое число не изменяется. Ядро испускает антинейтрино. Освободившееся место, которое занимал в К или L-уровне захваченный , заполняется электроном из более удаленных от ядра энергетических уровней. Избыток энергии, освободившийся при таком переходе, испускается атомом в виде характеристического рентгеновского излучения.


AZХ + е- → AZ-1 У + v- + рентгеновское излучение;


4019К + е- → Аr + v-+ рентгеновское излучение;


6429Сu + е- → 6428 Ni+v- + рентгеновское излучение.


Электронный К-захват характерен для 25% всех радиоактивных ядер, но в основном для искусственных радиоактивных изотопов, расположенных в другой половине таблицы Д.И. Менделеева и имеющих излишек протонов (Z = 45 - 105). Только три естественных элемента претерпевают К-захват: калий-40, лантан-139, лютеций-176 (4019K, 15957La, 17671Lu).


Некоторые ядра могут распадаться двумя или тремя способами: путем альфа- и бета-распада и К-захвата.


Калий-40 подвергается, как уже отмечалось, электронному распаду - 88%, и К-захвату - 12%. Медь-64 (6428Сu) превращается в никель (позитронный распад - 19%, К-захват - 42%; (электронный распад - 39%).


3. Испускание γ-излучения не является видом радиоактивного распада (при этом не происходит превращение элементов), а представляет собой поток электромагнитных волн, возникающих при альфа- и бета-распаде ядер атомов (как естественных, так и искусственных радиоактивных изотопов), когда в дочернем ядре оказывается избыток энергии, не захваченный корпускулярным излучением (альфа- и бета- частицей). Этот избыток мгновенно высвечивается в виде гамма-квантов.


13153I → 13154Xe + e- +v- +2γ кванта; 22688Ra → 42He + 22286Rn + γ квант.


4. - испускание протона из ядра в основном состоянии. Этот процесс может наблюдаться у искусственно полученных ядер с большим дефицитом нейтронов:


лютеций - 151 (15171Lu) - в нем на 24 нейтрона меньше, чем в стабильном изотопе 17671Lu.