Методы защиты от теплового излучения. Тепловое излучение и защита от него

Основные мероприятия, направленные на снижение опасности воздействия инфракрасного излучения, состоят в следующем: снижение интенсивности излучения источника, защитное экранирование источника или рабочего места, использование средств индивидуальной защиты, лечебно-профилактические мероприятия.Снижение интенсивности инфракрасного излучения источника достигается выбором технологического оборудования, обеспечивающего минимальные излучения.

Средства защиты от тепловых излучений подразделяются на коллективные и индивидуальные.

Среди коллективных наиболее распространенными средствами защиты от инфракрасного излучения являются устройства, соответствующие классификации, приведенной в ГОСТ 12.4.123-83. Согласно этого документа защита достигается следующими приемами:

– герметизацией оборудования

– использованием оградительных, теплоизолирующих устройств

– максимальной механизацией и автоматизацией технологических процессов с выводом работающих из «горячих зон» (дистанционное управление)

– оптимальным размещением оборудования и рабочих мест

– средствами вентиляции

– автоматическим контролем и сигнализацией

– примененим средств коллективной и индивидуальной защиты.

К средствам коллективной защиты относятся оградительные устройства – это конструкции, отражающие поток электромагнитных волн или преобразующие энергию инфракрасного излучения в тепловую энергию, которая отводится или поглощается конструктивными элементами защитного устройства (экраны, водяные и воздушные завесы). Возможен комбинированный принцип действия оградительных устройств. Примером отражающих оградительных устройств являются конструкции, состоящие из одной или нескольких пластин, которые размещены параллельно и с зазором. Охлаждение пластин осуществляется естественным или принудительным способом. С помощью этих устройств ограждаются излучающие поверхности или рабочее место оператора. Для локализации инфракрасного излучения от стен печей, нагретых материалов, а также для ограждения кабин операторов используются полированные пластины из алюминия толщиной 1-1,5мм, устанавливаемые с зазором 25-30м, смотровые проемы ограждаются листовыми стеклами, установленными с зазором 20-30мм.

Локализация инфракрасного излучения о нагретых стен и открытых проемов печей может осуществляться с помощью экранов из металлического листа; укрывающего набора труб, по которым под напором движется вода. Аналогичный эффект достигается с помощью устройства, состоящего из сварных заслонок, которые футерованы огнеупорными материалами. Охлаждение этого экрана осуществляется водовоздушной смесью.

Экраны могут быть изготовлены из металлической сетки или из подвешенных металлических цепей, интенсивно орошаемых водой. Сетка используется для экранирования нагретых продуктов переработки, а цепи – для экранирования открытых проемов печей. Если температура источника тепла не превышает 373К (100 0 С), то поверхность оборудования должна иметь температуру не более 308К (35 0 С), а при температуре источника выше 373К (100 0 С) – не более 318К (45 0 С).

Для выбора средств защиты от переоблучения необходимы сведения о величине плотности потока энергии для конкретных условий работы.

Различные виды сварки (в том числе аргонодуговая сварка цветных металлов) характеризуются интенсивным излучением электромагнитных волн. При сварке титанового сплава суммарный уровень облученности на расстоянии 0,2мм от сварочной дуги составляет 5500Вт/м 2 (длина волны в интервале 0,2-3,0 мкм). Основные составляющие облучения – это инфракрасное излучение в диапазоне от 0,76 до 3,0 мкм (62,3%) и ультрафиолетовое излучение с длиной волны 0,2-0,4мкм (24%). На расстоянии 0,5м уровень облученности снижается в 3,5раза.

Сварка алюминиевого сплава АМГ характеризуется еще большей интенсивностью электромагнитного излучения; при этом на расстоянии 0,2м от дуги она достигает 7000 Вт/м 2 . В спектре преобладает интенсивное инфракрасное излучение в диапазоне от 0,76 до 3,0 мкм (23-48%) и ультрафиолетовое излучение (24%). Увеличение расстояния до 0,5 м снижает облученность в 1,5-2 раза. При сварке меди суммарная облученность значительно меньше, но в данном случае наибольшую интенсивность имеет инфракрасное излучение с длиной волны 0,2-0,4 мкм и с преобладанием инфракрасного излучения в 1,5 мкм и выше.

Теплоизоляция горячих поверхностей снижает температуру излучающей поверхности и уменьшает как общие выделения теплоты, так и лучистую его часть. Кроме улучшения условий труда теплоизоляция уменьшает тепловые рлтери оборудования, снижает расходы топлива (электороэнергии, пара) и приводит к увеличению производительности агрегатов. Теплозащитныеустройства должны обеспечивать:

Интенсивность теплового излучения на рабочих местах ≤350 Вт/м 2

Температуру поверхности оборудования ≤35 0 С (температура внутри источника до 100 0 С) и ≤45 0 С (при температуре внутри источника >100 0 С).

К средствам коллективной защиты относятся также такие приемы, как сокращение продолжительности смены, рабочего стажа, организация подсмен, питьевого режима (5 л/смену на человека подсоленной газированной воды, чая).

В качестве средств индивидуальной защиты используются:

– специальные костюмы невоспламеняемого, стойкого к тепловому излучению,прочного, мягкого, влагоемеого, гигроскопичного материала (например, суконо, лен, брезент)

– валенки или ботинки

– рукавицы суконные или брезентовые

– широкие суконные, войлочные, фетровые шляпы или каски

– очки защитные со светофильтрами.

Тепловым излучением называется процесс, при котором теплота излучения распространяется в основном в форме инфракрасного излучения с длиной волны около 10 мм. Источниками тепловых излучений являются все тела, нагретые до температуры выше температуры окружающей среды.

Теплота излучения воздухом почти не поглощается, она передается от более нагретых тел к телам с меньшей температурой, вызывая их нагревание. Окружающий воздух нагревается не тепловым излучением, а конвекцией, т. е. при соприкосновении с поверхностями нагретых тел.

В результате поглощения телом человека падающей энергии (от печей, раскаленных слитков) повышается температура кожи и глубже лежащих слоев на облучаемом участке. Под влиянием облучения в организме происходят биохимические сдвиги, наступает нарушение сердечно-сосудистой и нервной системы, могут возникнуть заболевания глаз (катаракта) , т.к. излучение наиболее неблагоприятно для органов с плохим кровообращением (хрусталик глаза).

Температура нагретых поверхностей производственного оборудования и ограждений на рабочих местах (печей, ванн и др.) не должна превышать 45°С, а для оборудования, внутри которого температура равна или ниже 100 °С, температура на поверхности не должна превышать 35 °С.

Допустимая величина интенсивности излучения составляет от 35 до 140 Вт/м 2 (ГОСТ 12.1.005-88) - такое тепловое излучение переносится человеком неограниченно долго.

Для сравнения: примеры интенсивности тепловых излучений:

1) солнечный полдень - 700-800 Вт/м 2 ;

2) заливка стали в формы - 12000 Вт/м 2 .

Средства защиты:

1. Теплоизоляция (войлок, минеральная вата). Толщина теплоизоляции должна быть такой, чтобы температура снаружи ее была не более 45˚ С (СН 245-71).

Теплоизоляция - это элементы конструкции, уменьшающие передачу тепла. Также термин может означать материалы для выполнения таких элементов или комплекс мероприятий по их устройству.

Теплоизоляцию можно разделить по следующим типам, соответствующим разным способам теплопередачи:

Отражающая, которая предотвращает потери за счёт инфракрасного "теплового" излучения;

Теплоизоляция, предотвращающая потери за счёт теплопроводности.

Теплоизоляция применяется для замедления нагрева или охлаждения всюду, где необходимо поддерживать заданную температуру,

Для изготовления теплоизоляции, препятствующей теплопроводности, используют материалы, имеющие очень низкий коэффициент теплопроводности, - теплоизоляторы (материалы из стекловолокна, вспененный полиэтилен высокого давления). Теплоизоляторы отличаются неоднородной структурой и высокой пористостью. В случаях, когда теплоизоляция применяется для удержания тепла внутри изолируемого объекта, такие материалы могут называться утеплителями.

2 Экранирование тепловых излучений (кварцевое стекло, металлическая сетка, цепные завесы, водяные завесы).

Для защиты от инфракрасного излучения применяются следующие экраны: непрозрачные, полупрозрачные и прозрачные.

Непрозрачные экраны могут быть теплоотражающими, теплопоглощающими и теплоотводящими. Однако это деление достаточно условно, так как каждый экран обладает одновременно способностью отражать, поглощать и отводить тепло. Отнесение экрана к той или иной группе производится в зависимости от того, какая его способность выражена сильнее.

Теплоотражающие экраны имеют низкую степень черноты поверхностей, вследствие чего они значительную часть падающей на них лучистой энергии отражают в обратном направлении. В качестве теплоотражающих материалов в конструкции экранов широко используют альфоль, листовой алюминий, оцинкованную сталь, алюминиевую краску.

Теплопоглощающими называют экраны, выполненные из материалов с высоким термическим сопротивлением (малым коэффициентом теплопроводности). В качестве теплопоглощающих материалов применяют огнеупорный и теплоизоляционный кирпич, асбест, шлаковату.

В качестве теплоотводящих экранов наиболее широко используются водяные завесы, свободно падающие в виде пленки, орошающие другую экранирующую поверхность (например, металлическую), либо заключенные в специальный кожух из стекла (акварильные экраны), металла (змеевики) и др.

Полупрозрачные экраны изготовляют из металлической сетки, цепей, армированного стальной сеткой стекла и применяются: сетки - при интенсивности излучения 350 - 1000 Вт/м 2 , цепные завесы и армированное стекло - 700 - 5000 Вт/м 2 . Полупрозрачные экраны объединяют в себе свойства прозрачных и непрозрачных экранов.

Прозрачные экраны могут быть теплопоглощающими и теплоотводящими. Теплопоглощающие экраны изготовляют из силикатных, кварцевых и органических стекол, бесцветных, окрашенных или металлизированных тонкими пленками.

Лабораторная работа №7

Оценка эффективности экранов для защиты от теплового излучения

Цель работы

Определение интенсивности теплового облучения на рабочем месте и оценка эффективности защитных экранов.

1. Измерить интенсивность теплового облучения на разных расстояниях от источника излучения:

а) при отсутствии защитных экранов;

б) при наличии защитного теплопоглощающего экрана - цепной завесы;

в) при наличии защитного теплоотводящего экрана - водяной завесы.

2. Измерить температуру источника излучения.

Тепловое излучение и защита от него

Процессы теплопередачи имеют широкое распространение в тепловой и атомной энергетике, ракетно-космической технике, металлургии, химической технологии, светотехнике, гелиотехнике и др.

Перенос теплоты от нагретых тел в окружающем пространстве осуществляется по законам теплопроводности, конвективного теплообмена и теплообмена излучением.

В отличие теплопроводности и конвекции, где плотность теплового потока зависит от температуры в первой степени, перенос энергии излучением определяется четвертой степенью абсолютной температуры. Вследствие этого при высоких температурах основным видом переноса теплоты является излучение.

При температурах 500°С около 60-90% всей теплоты, выделяемой производственным оборудованием и материалами, распространяется в окружающем пространстве путем излучения. При этом энергия излученияпроходит воздушную среду практически без потерь, снова превращаясь в тепловую энергию облучаемых тел.

Основополагающие законы теплового излучения были установлены физиками в конце 19 века и носят их имена.

Закон Стефана-Больцмана выражает зависимость плотности теплового излучения абсолютно черного тела от абсолютной температуры в четвертой степени



С = s Т 4 = С о (Т/100) 4 , (1)

где s, С о - постоянная и коэффициент излучения абсолютно черного тела (С о = 10 8 s = 5,67 [ Вт/м 2 К 4 ]). На практике приходится иметь дело с серыми телами, для них закон Стефана-Больцмана имеет вид:

Е i = e i e = С (Т/100) 4 , (2)

где e i =E i /e - степень черноты i-го тела (0 < e < 1),

С - коэффициент излучения серого тела [Вт/м 2 К 4 ].

3акон Планка устанавливает связь спектральной плотности теплового излучения абсолютно черного тела I o l [Вт/м 2 ], с длиной волны излучения [м] и абсолютной температурой тела:

I o l = C 1 l -5 / [ ехр (С 2 /lТ) - 1] . (3)

В этом выражении: C 1 =3,74×10 -18 [Вт/м 2 ] и С 2 =1,44×10 [м×К] - постоянные излучения.

Графически закон Планка представлен на рис.1.

В.Вин в 1893 году установил, что произведение абсолютной температуры тела на длину вечны максимальной энергии теплового излучения есть величина постоянная:

Тl MAX = 2,898 [м×К]. (4)

Это выражение получило название закона смещения Вина: с ростом температуры максимум спектральной плот-ности потока излучения смещается в коротковолновую область.

Расчет теплообмена излучением между двумя телами является сложной задачей. В общем случае поток энергии между телами определяется температурами тел, их формами, размерами и состоянием поверхностей, взаимным расположением в пространстве и расстоянием между ними. Аналитически эту зависимость можно представить в виде:

Q 1,2 = e пр С S 1 [(T 1 /100) 4 - (Т 2 /100) 4 ] j 1,2 , (5)

где e пр =[ l/e 1 + (S 1 /S 2) (1/e 2 -1)] - приведенная степень черноты двух тел;

S 1 , S 2 - площади поверхностей теплоизлучающего и теплопринимающего тел [м 2 ];

j 1,2 = Q 2 /Q 1 - коэффициент облученности, показывающий какая доля энергии излучения первого тела (Q 1) попадает на второе тело (Q 2). Коэффициент облученности можно рассчитать по законам геометрической оптики или взять из справочной литературы.

При длительном пребывании человека в зоне лучистого потока теплоты происходит нарушение теплового баланса в его организме, что может вызвать заболевание, называемое тепловой гипотермией (перегревом). В нормальных условиях в организме человека поддерживаются стабильные и постоянные условия для функционирования биологических клеток. Это явление называется гомеостазом. Одним из механизмов гомеостаза является система поддержания постоянства внутренней температуры тела человека. Если гомеостатическая система поддержания постоянства температуры организма не справляется с рассеянием избыточного поступающего тепла наступает гипотермия. При этом нарушаются и другие защитные гомеостатические функции организма. Поэтому это заболевание характеризуется не только повышением температуры тела, но и обильным потоотделением, значительным учащением пульса и дыхания, резкой слабостью, головокружением, изменением зрительных ощущений, шумом в ушах и, зачастую, потерей сознания.

Гомеостатические системы поддержания стабильности жизнедеятельности организма связаны между собой и помогают друг другу преодолевать отрицательные внешние воздействия иногда заменяя вышедшие из строя. Поэтому даже при уровнях теплового излучения, не вызывающих гипотермию наблюдается ослабление внимания, замедление реакций, ухудшение координации движений, что в свою очередь приводит к снижению производительности труда.

Тепловой эффект воздействия облучения зависит от многих факторов. Интенсивность облучения менее 700 Вт/м не вызывает у человека неприятного ощущения, если действует несколько минут; свыше 3500 Вт/м - уже через 2 с вызывает жжение, а через 5 с возможен тепловой удар. Производственные источники по характеру спектрального излученияусловно можно разделить на четыре группы:

1) с температурой излучающей поверхности до 500 °С (паропроводы, сушильные установки, низкотемпературные аппараты, наружная поверхность различных печей и др.); их спектр содержит длинные инфракрасные лучи (длина волны 3,7 - 9, 3 мкм);

2) с температурой поверхности от 500 до 1300 °С (открытое пламя, открытые проемы нагревательных печей и топок, нагретый металл - слитки, заготовки, расплавленные чугун и бронза и др.); их спектр содержит преимущественно инфракрасные лучи (1,9-3,7 мкм), но появляются и видимые лучи;

3) с температурой 1300-1800 °С (открытые проемы плавильных печей, расплавленная сталь и др.); их спектр содержит как инфракрасные лучи вплоть до коротких (1,2-1,9 мкм), так и видимые большой яркости;

4) с температурой выше 1800 °С (пламя электродуговых печей, сварочных аппаратов и др.) их спектр излучения содержит наряду с инфракрасными (0,8-1,2 мкм) и видимыми (0,4-0,8 мкм) также и ультрафиолетовые лучи.

Существуют следующие способы защиты от вредного воздействия теплового излучения: тепловая изоляция нагретых поверхностей, экранирование источников теплового излучения, применение воздушного душирования, удаление от источника теплового излучения (дистанционное управление), сокращение времени пребывания в зоне воздействия теплового излучения, использование средств индивидуальной защиты (защитные очки, маски, одежда).

Наиболее распространенным и эффективным способом защиты от теплового излучения является экранирование - создание определенного термического сопротивления на пути теплового потока в виде экранов различных конструкций (жестких глухих, сетчатых, полупрозрачных водяных, воздушно-водяных и др.). Различают теплоотражающие, теплопоглощающие и теплоотводящие экраны. В свою очередь, по степени прозрачности они делятся на три класса: непрозрачные, полупрозрачные и прозрачные. К теплоотражающим экранам относятся жесткие глухие преграды, изготовленные из материалов с высокой степенью отражения такие, как алюминий листовой, белая жесть, альфоль (алюминиевая фольга), а также закаленные стекла с пленочным покрытием. В последнее время получила распространение вакуумно-многослойная изоляция, изготовленная из множества полированных металлических пластин с зазорами, из которых откачен воздух. Эти экраны отличает высокая эффективность (отражается до 58% излучения), малая масса, экономичность. Однако, эти экраны не выдерживают высоких механических нагрузок, эффективность их существенно снижается при отложении на них пыли, при окислении.

В настоящее время нашли широкое применение экраны, выполненные из металлической плотной сетки или из металлических мелких цепей, подвешенных против излучающего проема в один или несколько рядов. Хотя цепные экраны не могут защищать от излучения так хорошо, как глухие (цепные завесы снижают тепловой поток на 60-70%), их применение в ряде случаев оправдано, поскольку они позволяют наблюдать за ходом технологического процесса.

Теплоотводящие экраны (водяные и вододисперсные завесы) применяют в тех случаях, когда через экран необходимо вводить инструмент или заготовки. Коэффициент эффективности водяных завес в значительной степени зависит от спектрального состава излучения м толщины слоя и может достигать 80%. Экраны в виде водяной пленки, стекающей по стеклу более устойчивы по сравнению со свободными водяными завесами. Их эффективность порядка 90%.

В определении оптимальных условий защиты от теплового излучения важное значение имеет характер его спектрального состава, так как материал экрана должен поглотить или отразить лучи, несущие максимум энергии. Как видно из рис.2 для организации эффективной защиты от теплового излучения необходимо устранить в лучистом потоке по возможности наибольший диапазон длинноволнового излучения, которое хорошо поглощается поверхностью кожи человека.


Вода является активным поглотителем инфракрасных лучей. Наиболее сильное поглощение отмечается в зоне лучей с длиной волны l=1,5-6,0 мкм.

Слой воды толщиной 1мм полностью поглощает участок спектра с l= 3 мкм, а слой 10 мм - тепловой поток с длиной волны l= 1,5 мкм.

Таким образом, слой воды, применяемый в защитных экранах, должен иметь толщину порядка нескольких мм, при этом однако коротковолновое излучение высокотемпературных источников не будет поглощено, что проявляется, например, в видимости светового излучения: являющегося коротковолновой части теплового излучения. Поэтому тонкие водяные завесы эффективны в основном для экранирования излучений от низкотемпературных источников (до 800 °С).

Интенсивность теплового облучения Е [Вт/м 2 ], которому подвергается человек применительно к условиям данного лабораторного стенда, можно оценить по приближенной формуле:

Е 0 =0,91S[(T изл /100) 4 -(T обл /100) 4 ]/L 2 , (6)

где S - площадь излучающей поверхности, м 2 ;

Т изл - температура излучающей поверхности, К;

Т обл - температура облучаемой части тел, К (для приближенного расчета можно принять Т обл = 309 К, то есть =36 °С);

L - расстояние от источника излучения, м.

Формула (6) верна при условии L ³ .

Расчет интенсивности облучения при наличии водяной завесы построен на принципе ослабления лучистого потока при прохождении через мутную среду с определенным оптическим показателем.

Уравнение поглощения лучистой энергии какой-либо средой имеет вид

Е= E o exp(-dd), (7)

где Е, Е о - интенсивность теплового облучения в данной точке при наличии и отсутствие завесы соответственно, Вт/м 2 ;

d - опытный коэффициент ослабления потока излучений мутной средой, равный для водяной завесы 1,3 мм -1 ;

d - толщина завесы, мм (при работе принять = 1мм).

В плоско-параллельной системе тел и экранов легко получается формула для определения снижения интенсивности лучистого теплообмена. В этом случае между двумя телами со степенью черноты e= e 1 = e 2 за счет установки между ними экранов со степенью черноты e э #e теплообмен уменьшается:

Е экр / Е 1,2 = . (8)

Коэффициент эффективности защитного теплового экрана в общем случае можно рассчитать по формуле:

h = (Е о - Е э) / Е о, (9)

где Е о и Е э - соответственно интенсивность облучения в данной точке при отсутствии и наличии экрана, Вт/м 2 .

Введение

Источники и характеристики тепловых излучений

Воздействие на организм тепловых излучений

3. Меры и средства индивидуальной защиты от тепловых излучений



Введение

Тепловым излучением называется процесс, при котором теплота излучения распространяется в основном в форме инфракрасного излучения с длиной волны около 10 мм. Источниками тепловых излучений являются все тела, нагретые до температуры выше температуры окружающей среды.

Теплота излучения воздухом почти не поглощается, она передается от более нагретых тел к телам с меньшей температурой, вызывая их нагревание. Окружающий воздух нагревается не тепловым излучением, а конвекцией, т.е. при соприкосновении с поверхностями нагретых тел. Превышение температуры воздуха в помещении выше оптимальной вызывает нарушение нормальной терморегуляции организма и может быть причиной расстройства сердечно-сосудистой системы.

Прогресс в металлургии связан с интенсификацией процессов, укрупнением агрегатов, увеличением их тепловой мощности, что приводит к увеличению избыточных тепловыделений в горячих цехах. Теплонапряженность этих помещений составляет 290-350 Вт/м3, но уже при 23 Вт/м3 цех, согласно СН 245-71, считается горячим.

Теплообмен в производственных помещениях горячих цехов происходит излучением и конвекцией. В процессе теплообмена различают две стадии: между источниками теплоты (с t > 33 °С) и окружающими предметами (эта стадия в металлургических цехах отличается высокой интенсивностью лучистого обмена и сравнительно малой интенсивностью конвективного), между нагретыми облучением телами и воздухом (в этой стадии преобладает конвекция). При температуре источников тепловыделений более 50 °С, что характерно для металлургии, в теплообмене преобладает излучение. Поэтому для обеспечения нормальных условий труда металлургов снижение теплоизлучений является основной задачей.

1. Источники и характеристики тепловых излучений

К числу горячих цехов с терморадиационным режимом (преобладает лучистый теплообмен) относятся доменные, сталеплавильные и прокатные цехи заводов черной металлургии, электролизные цехи алюминиевых заводов и плавильные цехи заводов цветной металлургии, кузнечно-прессовые и литейные цехи машиностроительных предприятий. Пространство горячего цеха заполнено излучением от стационарных агрегатов и подвижных источников: ковшей с металлом, заготовок и изделий.

Каждый источник теплоты создает в пространстве поле излучения, независимое от взаимного положения источников. Поля излучений, распространяясь в пространстве, накладываются одно на другое, создавая некоторую картину терморадиационной напряженности цеха. Таким образом, пространство горячего цеха представляет собой поле распределения энергии излучения. Лучистая энергия не поглощается окружающим воздухом, она превращается в тепловую в поверхностных слоях облучаемого тела.

Передача теплоты излучением происходит в инфракрасном (ИК), видимом (В) и ультрафиолетовом (УФ) диапазонах спектра распространения электромагнитных волн и зависит, в первую очередь, от температуры источника. Энергия тепловых излучений металлургических источников располагается главным образом в инфракрасном диапазоне спектра.

Производственные источники лучистого тепла по характеру излучения можно разделить на 4 группы:

Источники с температурой поверхности до 500 °С (паропроводы, наружная поверхность нагревательных, плавильных, обжиговых печей, сушил, парогенераторов и водогрейных котлов, выпарных аппаратов, теплообменников и др.). Их спектр содержит исключительно длинные инфракрасные лучи с длиной волны l =3,7¸9,3 мкм.

Поверхности с температурой t = 500 ¸ 1200 °С (внутренние поверхности печей, горнов, топок парогенераторов, расплавленные шлаки и металл и др.) Их спектр содержит преимущественно длинные инфракрасные лучи, но появляются и видимые лучи.

Поверхности с t = 1200 ¸ 1800 °С (расплавленный металл и шлаки, пламя, разогретые электроды и др.) Их спектр - инфракрасные лучи вплоть до наиболее коротких, а также видимые, которые могут достигать высокой яркости.

Источники с t > 1800 °С (дуговые печи, сварочные аппараты и др.). Их спектр излучения содержит наряду с инфракрасными и световыми лучами, ультрафиолетовые лучи.

Таблица 1. Характеристики источников излучения

Источники излучения

t, о С, излучения

λ,мкм, ИК излучения

Спектральная характеристика излучения

Наружные поверхности печей, остывающие изделия

ИК (Е ик =100%)

Внутренние поверхности печей, пламя, нагретые заготовки

ИК,В (Е в < 0,1%)

Расплавленный металл, разогретые электроды

ИК,В (Е в < 1%)

Пламя дуговых печей, сварочные аппараты

ИК, В, УФ (Е уф < 0,1%)


Интенсивность теплового излучения зависит от температуры и площади источника и степени черноты его поверхности. Для рассмотрения аналитических зависимостей по лучистому теплообмену обратимся к законам теплового излучения.

При теплообмене излучением между двумя а.ч.т. с температурами Т 1 и Т 2 тепловой поток, Вт, рассчитывается по формуле:

Q = С о [ (Т 1 /100) 4 - (Т 2 /100) 4 ]F 1 φ 12 , где

Т 1 ,Т 2 - температуры тел 1 и 2 соответственно, К; 1 - площадь поверхности тела 1;

φ 12 = 0÷1 - коэффициент облученности, который показывает, какая часть лучистого потока, излучаемого телом 1, попадает на тело 2 (φ 12 часто определяют по графикам).

Тепловой поток при теплообмене между серыми телами:

Q = ε пр С о [ (Т 1 /100) 4 - (Т 2 /100) 4 ]F 1 φ 12 , где

ε пр = (ε 1 -1 + ε 2 -1 -1) -1 - приведенная степень черноты серых тел.

Плотность теплового потока на расстоянии l от точечного источника обратно пропорциональна квадрату расстояния: q = Q/ l 2 .

Воздействие на организм тепловых излучений

тепловое излучение организм защита

Терморадиационный режим в горячих цехах характеризуется облученностью от стационарных и подвижных источников.

Рассеянное излучение от первичных и вторичных источников создает фоновую облученность. Абсолютное количество тепловыделений подвижных источников при формировании терморадиационного режима цеха невелико, но эти источники оказывают значительное влияние на отдельные рабочие места.

Интенсивность теплового облучения рассчитывают на основании уравнений для Q и ε пр, имея в виду, что Т 1 и ε 1, Т 2 и ε 2 - соответственно температура и степень черноты источника, кожи и одежды человека. Интенсивность облучения человека, Вт/м 2 , от нагретой поверхности рекомендуется определять по формуле:

ρ = ε пр С о [(Т/100) 4 - А]соsα, где

ε пр - приведенная степень черноты серых тел;

С о = 5,67 Вт/(м 2 *К 4) - коэффициент излучения а.ч.т.;

Т - температура источника, К;

А = 85 (при t 2 = 31 °С) - для кожи и хлопчатобумажной ткани,

А = 110 (при U = 51 о С) - для сукна;

α - угол между нормалью к излучающей поверхности и направлением от ее центра к рабочему месту,

cosα - поправка на смещение работающего от линии, перпендикулярной к центру излучающей поверхности.

Часто этот расчет затруднен ввиду сложности определения коэффициента облученности φ и приведенной степени черноты ε пр. Если человек находится вблизи большой, по сравнению с его размерами излучающей поверхности F, то φ = 1, а интенсивность облучения ρ не зависит от расстояния l от источника. Если, излучающая поверхность невелика, интенсивность облучений обратно пропорциональна расстоянию или его квадрату (l 2). Поэтому выражение для расчета интенсивности облучения от нагретой поверхности или через отверстие в печи для практических расчетов можно преобразовать:

ρ = 0,91[(Т/100) 4 - А] F/ l 2 , при l >

ρ = 0,91[(Т/100) 4 - А] , при l ∠

Если рабочее место смещено от нормали к центру излучающей поверхности, необходимо ввести поправку, равную косинусу угла смещения. В некоторых справочниках принято А = 90 (при t 2 = 35 о С).

Чтобы оценить воздействие теплового облучения на организм в работающих горячих цехах, необходимо учесть, что интенсивность облучения разных участков тела человека на рабочем месте изменяется в течение смены или цикла технологического процесса. Поэтому энергия, Дж, поглощенная поверхностью тела человека, определяется по формуле:

Е = , где

Таким образом, степень воздействия тепловых излучений на организм человека зависит от интенсивности и времени облучения, размеров облучаемой поверхности. В формулу для ρ заложена зависимость интенсивности облучения от вида одежды (коэффициент А) и спектрального состава облучения (через температуру источника). В производственных условиях тепловое излучение имеет длины волн λ = 0,1÷440 мкм, в горячих цехах λ < 10 мкм.

Под действием высоких температур и теплового облучения работающих происходят резкое нарушение теплового баланса в организме, биохимические сдвиги, появляются нарушения сердечнососудистой и нервной систем, усиливается потоотделение, происходит потеря нужных организму солей, нарушение зрения.

Все эти изменения могут проявиться в виде заболеваний:

судорожная болезнь, вызванная нарушением водно-солевого баланса, характеризуется появлением резких судорог, преимущественно в конечностях;

перегревание (тепловая гипертермия) возникает при накоплении избыточного тепла в организме; основным признаком является резкое повышение температуры тела;

тепловой удар возникает в особо неблагоприятных условиях: выполнение тяжелой физической работы при высокой температуре воздуха в сочетании с высокой влажностью. Тепловые удары возникают в результате проникновения коротковолнового инфракрасного излучения (до 1,5 мкм) через покровы черепа в мягкие ткани головного мозга;

катаракта (помутнение кристалликов) - профессиональное заболевание глаз, возникающее при длительном воздействии инфракрасных лучей с λ = 0,78-1,8 мкм. К острым нарушениям органов зрения относятся также ожог, конъюнктивиты, помутнение и ожог роговицы, ожог тканей передней камеры глаза.

Кроме того, ИК-излучение воздействует на обменные процессы в миокарде, водно-электролитный баланс в организме, на состояние верхних дыхательных путей (развитие хронического ларингоринита, синуситов), не исключается мутагенный эффект теплового излучения.

Поток тепловой энергии, кроме непосредственного воздействия на работающих, нагревает пол, стены, перекрытия, оборудование, в результате чего температура воздуха внутри помещения повышается, что также ухудшает условия работы.

Меры и средства индивидуальной защиты от тепловых излучений

Для снижения опасности воздействия тепловых излучений используют следующие способы:

· уменьшение интенсивности излучения источника,

· защитное экранирование источника или рабочего места,

· воздушное душирование,

· применение средств индивидуальной защиты,

· организационные и лечебно-профилактические мероприятия.

Нормирование параметров и организационные меры

Прежде чем реализовывать в горячих цехах те или иные способы защиты необходимо знать, до каких значений рекомендуют снизить параметры микроклимата на рабочих местах врачи-гигиенисты или позволяет сделать это современный уровень развития техники. Эти данные приведены, как известно, в нормативно-технической документации.

Допустимая интенсивность теплового облучения ρ д работающих от нагретых поверхностей технологического оборудования (на постоянных и непостоянных рабочих местах) зависит от величины облучаемой поверхности тела человека S, %, (значения согласно ГОСТ 12.1.005-88 приведены в таблице 2.)

Таблица 2. Допустимая интенсивность теплового облучения


Интенсивность теплового облучения работающих открытыми источниками (нагретым металлом, "открытым пламенем" и др.) не должна превышать 140 Вт/м 2 , при этом облучению не должно подвергаться более 25% поверхности тела при обязательном использовании средств индивидуальной защиты.

При наличии теплового облучения температура воздуха на постоянных рабочих местах не должна превышать указанные в ГОСТ 12.1.005-88 верхние границы оптимальных значений для теплого периода года, на непостоянных рабочих местах - верхние допустимые значения для постоянных рабочих мест.

Температура нагретых поверхностей оборудования (например, печей), по оценкам гигиенистов, не рекомендуется более 35 °С. По действующим санитарным нормам (СН 245-71) температура нагретых поверхностей и ограждений на рабочих местах не должна превышать 45 °С, а температура на поверхности оборудования, внутри которого t < 100 °С, не должна превышать 35 °С.

При невозможности по техническим причинам достигнуть указанных температур вблизи источников значительных тепловых излучений предусматривается защита работающих от возможного перегрева:

· водовоздушное душирование,

· высокодисперсное распыление воды на облучаемые поверхности и кабины,

· помещения для отдыха и др.

Правильная организация отдыха имеет большое значение для восстановления работоспособности. Длительность перерывов и их, частота определяются с учетом интенсивности облучения и тяжести работы. В местах отдыха недалеко от места работы обеспечиваются благоприятные метеорологические условия. Регулярно организуются медосмотры для своевременного лечения.

Технические меры защиты

Технические меры защиты от тепловых излучений:

· механизация, автоматизация и дистанционное управление и наблюдение за производственными процессами,

· тепловая изоляция и герметичность печей,

· экранирование печей и рабочих мест.

Совершенствование способов и технологии производства сталей и цветных металлов (например, замена мартеновского производства конвертерным), применение средств автоматизации и вычислительной техники в металлургии позволяет резко сократить количество рабочих мест вблизи мощных источников тепловых излучений.

Снижение интенсивности теплового излучения источника обеспечивается заменой устаревших технологических схем современными (например, замена пламенных печей на электрические); рациональной компоновкой оборудования, обеспечивающей минимальную площадь нагретых поверхностей.

Тепловая изоляция поверхностей источников излучения (печей, ковшей, трубопроводов с горячими газами и жидкостями) снижает температуру излучающей поверхности и уменьшает как общее тепловыделение, так и радиационную его часть. Тепловая изоляция, уменьшая тепловые потери оборудования, обуславливает сокращение расхода топлива (электроэнергии).

Наиболее распространенным и эффективным способом защиты от теплового излучении является экранирование. Экраны применяются для локализации источников лучистой теплоты, снижения облученности на рабочих местах, снижения температур окружающих рабочее место поверхностей.

Цели экранирования - снижение температуры наружного ограждения теплового источника и локализация его тепловыделений (рисунок 1а), защита отдельных объектов от излучения источника (рисунок 1б) - теплозащита отдельных рабочих мест, постов управления, кабин кранов, строительных несущих конструкций.

Рисунок 1. Расчетные схемы экранирования:

а - локализация источника; б - защита от внешнего источника

Если экранирование снижает поток излучения Q 12 в т раз, то температура наружной поверхности экрана Т э будет в μ раз меньше температуры поверхности источника Т 1 , т.е. μ = T 1 /T э.

Качество экранирования характеризует коэффициент эффективности экрана:

η = 1 - = , где

12 - поток излучения от источника; э2 - поток излучения от экрана.

Для достижения заданной температуры экрана Тэ=Т 1 /μ ∠35 о С необходимо n экранов, количество которых рассчитывается по формуле:

= (/[μ -4 - () 4 ]) - 1

Конструкция экрана должна обеспечивать свободный восходящий поток воздуха в межэкранном пространстве, чтобы максимально использовать охлаждающее действие конвективных потоков.

По конструкции и возможности наблюдения за технологическим процессом экраны можно разделить на:

· непрозрачные,

· полупрозрачные,

· прозрачные.

В непрозрачных экранах энергия электромагнитных колебаний взаимодействует с веществом экрана и превращается в тепловую энергию. Поглощая излучение, экран нагревается и, как всякое нагретое тело, становится источником теплового излучения. При этом излучение поверхностью экрана, противолежащей экранируемому источнику, условно рассматривается как пропущенное излучение источника. К непрозрачным экранам относятся, например, металлические (в т.ч. алюминиевые), альфолевые (алюминиевая фольга), футерованные (пенобетон, пеностекло, керамзит, пемза), асбестовые и др.

В прозрачных экранах излучение, взаимодействуя с веществом экрана, минует стадию превращения в тепловую энергию и распространяется внутри экрана по законам геометрической оптики, что и обеспечивает видимость через экран. Так ведут себя экраны, выполненные из различных стекол: силикатного, кварцевого, органического, металлизированного, а также пленочные водяные завесы (свободные и стекающие по стеклу), вододисперсные завесы.

Полупрозрачные экраны объединяют в себе свойства прозрачных и непрозрачных экранов. К ним относятся металлические сетки, цепные завесы, экраны из стекла, армированного металлической сеткой.

По принципу действия экраны подразделяются на:

· теплоотражающие,

· теплопоглощающие,

· теплоотводящие.

Однако это деление достаточно условно, так как каждый экран обладает одновременно способностью отражать, поглощать и отводить тепло. Отнесение экрана к той или иной группе производится в зависимости от того, какая его способность выражена сильнее.

Теплоотражающие экраны имеют низкую степень черноты поверхностей, вследствие чего они значительную часть падающей на них лучистой энергии отражают в обратном направлении. В качестве теплоотражающих материалов в конструкции экранов широко используют альфоль, листовой алюминий, оцинкованную сталь, алюминиевую краску.

Теплопоглощающими называют экраны, выполненные из материалов с высоким термическим сопротивлением (малым коэффициентом теплопроводности). В качестве теплопоглощающих материалов применяют огнеупорный и теплоизоляционный кирпич, асбест, шлаковату.

В таблице 3 отражены виды защитных экранов от теплового излучения.

Таблица 3 - Виды защитных экранов от теплового излучения

По принципу действия

По конструкции и возможности наблюдения за технологическим процессом


Непрозрачные

Полупрозрачные

Прозрачные

Теплопоглощающие

Материалы с большим термическим сопротивлением; Используют при высоких интенсивностях излучений и температурах, механических ударах и запыленной среде.

Металлические сетки, цепные завесы, армированное стальной сеткой стекло

Разные стекла (силикатные, органические, кварцевые), тонкие металлические пленки, осажденные на стекле

Теплоотводящие

Сварные или литые конструкции, охлаждаемые протекающей внутри водой; Практически теплонепроницаемы

Металлические сетки, орошаемые водяной пленкой

Водяные завесы у рабочих окон печей, водяная пленка, стекающая по стеклу.

Теплоотражающие

Материал: листовой алюминий, белая жесть, алюминиевая фольга; Достоинства: высокая эффективность, малая масса, экономичность; Недостатки: нестойкость к высоким температурам, механическим воздействиям


Пульты управления (или кабины) должны удовлетворять следующим требованиям:

· объем кабины оператора > 3 м 3 ;

· стены, пол и потолок оборудованы теплозащитными ограждениями;

· площадь остекления достаточна для наблюдения за технологическим процессом и минимальна для уменьшения поступления теплоты.

Местную приточную вентиляцию широко используют для создания требуемых параметров микроклимата в ограниченном объеме, в частности, непосредственно на рабочем месте. Это достигается созданием воздушных оазисов, воздушных завес и воздушных душей.

Воздушный оазис создают в отдельных зонах рабочих помещений с высокой температурой. Для этого небольшую рабочую площадь закрывают легкими переносными перегородками высотой 2 м и в огороженное пространство подают прохладный воздух со скоростью 0,2 - 0,4 м/с. Воздушные завесы создают для предупреждения проникновения в помещение наружного холодного воздуха путем подачи более теплого воздуха с большой скоростью (10-15 м/с) под некоторым углом навстречу холодному потоку. Воздушные души применяют в горячих цехах на рабочих местах, находящихся под воздействием лучистого потока теплоты большой интенсивности (более 350 Вт/ м2).

Поток воздуха, направленный непосредственно на рабочего, позволяет увеличить отвод тепла от его тела в окружающую среду. Выбор скорости потока воздуха зависит от тяжести выполняемой работы, а также от интенсивности облучения, но она не должна, как правило, превышать 5 м/с, так как в этом случае у рабочего возникают неприятные ощущения (например, шум в ушах). Эффективность воздушных душей возрастает при охлаждении направляемого на рабочее место воздуха или же при подмешивании к нему мелко распыленной воды (водо-воздушный душ).

Средства индивидуальной защиты от теплового излучения предназначены для защиты глаз, лица и поверхности тела. Для защиты глаз и лица используют очки со светофильтрами и щитки, голову от перегрева защищают каской, иногда - широкополой войлочной или фетровой шляпой. Остальную часть тела защищают спецодеждой из трудновоспламеняемых, прозрачных и воздухопроницаемых материалов: сукна, брезента или льняных тканей и спецобувью. В горячих цехах для поддержания водного баланса в организме необходимо обеспечить питьевой режим.

Заключение

В заключении, можно сделать вывод о том, что снижение теплоизлучений является основной задачей для обеспечения нормальных условий труда металлургов, т.к., например, ИК излучение, которое способно проникать в ткани человеческого тела приводят к повышению температуры кожи и лежащих глубже тканей. При коротковолновом излучении повышается температура легких, головного мозга, почек и т.п., может появиться инфракрасная катаракта.

К основным мерам защиты от тепловых излучений можно отнести следующие: уменьшение интенсивности излучения источника, защитное экранирование источника или рабочего места, воздушное душирование, применение средств индивидуальной защиты, организационные и лечебно-профилактические мероприятия, технические меры защиты (дистанционное управление и наблюдение, тепловая изоляция и герметичность печей, экранирование печей и рабочих мест).

Особое внимание уделяется экранированию целью, которого, является снижение температуры наружного ограждения теплового источника и локализация его тепловыделений, защита отдельных объектов от излучения источника - теплозащита отдельных рабочих мест, постов управления, кабин кранов, строительных несущих конструкций. В свою очередь экраны по конструкции и возможности наблюдения за технологическим процессом можно разделить на непрозрачные, полупрозрачные, прозрачные, а по принципу действия на теплоотражающие, теплопоглощающие и теплоотводящие.

Таким образом, защита от тепловых излучений должна производиться на каждом предприятии, где возможно нахождение таких источников излучения во избежание неблагоприятных последствий для здоровья работающих.

Список используемой литературы

1. Методы и средства защиты человека от опасных и вредных производственных факторов / под ред. В.А. Трефилова. - Пермь: Изд-во Перм. Гос. Техн. Ун-та, 2008.

Безопасность труда на производстве. Производственная санитария Справ, пособие/ Под ред. Б.М. Злобинского. М. Металлургия, 1968. 668 с.

ГОСТ 12.1.005-88. ССБТ. Воздух рабочей зоны. Общие санитарно-гигиенические требования».

СанПиН 2.2.4.548-96. Гигиенические требования к микроклимату производственных помещений.

СН 245-71. Санитарные нормы проектирования промышленных предприятий.

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

«Ивановский государственный энергетический

Университет имени В.И.Ленина»

Кафедра «Безопасности жизнедеятельности»

Защита от теплового излучения

Отчет по лабораторной работе по курсу

«Безопасность жизнедеятельности»

Выполнили:

Маслов А.С.

Метусалло Ю.А.

Проверил:

Каманин Д.А

Иваново - 2012

Теоритическая часть. Общие сведения.

Лучистый теплообмен между телами представляет собой процесс распространения тепловой энергии, которая излучается в виде электромагнитных волн в видимой и инфракрасной (ИК) области спектра. Длина волны видимого излучения - от 0,38 до 0,77 мкм, инфракрасного - от 0,77 до 1000 мкм. Такое излучение называется тепловым . С учетом особенности биологического действия по длинам волн ИК-излучения делятся на области: коротковолновую, с λ = 0,76–15 мкм, средневолновую, с λ = 16-100 мкм, длинноволновую, с λ > 100 мкм.

Производственные источники лучистого тепла по характеру излучения можно разделить на 4 группы:

Источники с температурой поверхности до 500 С (паропроводы, наружная поверхность нагревательных, плавильных, обжиговых печей, сушил, парогенераторов и водогрейных котлов, выпарных аппаратов, теплообменников и др.). Их спектр содержит исключительно длинные инфракрасные лучи с длиной волны=3,79,3 мкм.

Поверхности с температурой t = 500 1200 С (внутренние поверхности печей, горнов, топок парогенераторов, расплавленные шлаки и металл и др.) Их спектр содержит преимущественно длинные инфракрасные лучи, но появляются и видимые лучи.

Поверхности с t = 1200 1800 С (расплав­ленный металл и шлаки, пламя, разогретые электроды и др.) Их спектринфракрасные лучи вплоть до наиболее коротких, а также видимые, которые могут достигать высокой яркости.

Источники с t 1800 С (дуговые печи, сварочные аппараты и др.). Их спектр излучения содержит наряду с инфракрасными и световыми лучами, ультрафиолетовые лучи.

Воздух прозрачен (диатермичен ) для теплового излучения, поэтому температура воздуха не повышается при прохождении через него лучистого тепла. Тепловые лучи поглощаются предметами, нагревают их и они становятся излучателями тепла. Воздух, соприкасаясь с нагретыми телами, также нагревается и температура воздушной среды в производственных помещениях возрастает.

Интенсивность теплового излучения может быть определена по формуле:

где Q - интенсивность теплового излучения, Вт/м2;

F- площадь излучающей поверхности, м2;

Т- температура излучающей поверхности, К;

l - расстояние от излучающей поверхности, м.

Из формулы (1) следует, что количество лучистого тепла, поглощаемого телом человека, зависит от температуры источника излучения, площади излучающей поверхности и квадрата расстояния между излучающей поверхностью и телом человека.

Тепловой обмен организма человека с окружающей средой заключается во взаимосвязи между образованием тепла (термогенезом ) в результате жизнедеятельности организма и отдачей им этого тепла во внешнюю среду. Отдача тепла осуществляется, в основном, тремя способами: конвекцией, излучением и испарением.

Передача тепла ИК-излучением является наиболее эффективным способом теплоотдачи и составляет в комфортных метеоусловиях 44-59 % общей теплоотдачи. Тело человека излучает тепловую энергию в диапазоне длин волн от 5 до 25 мкм с максимумом энергии на длине волны 9,4 мкм.

В производственных условиях, когда работающий человек окружен предметами, имеющими температуру, отличную от температуры тела человека, соотношение способов теплоотдачи может существенно изменяться. Передача человеческим телом лучистой энергии во внешнюю среду возможна лишь тогда, когда температура окружающих предметов ниже температуры тела человека. Если температура окружающих предметов выше температуры человеческого тела, то направление потока лучистой энергии меняется на противоположное, и уже тело человека будет получать извне дополнительную тепловую энергию. Воздействие ИК лучей приводит к перегреву организма и тем быстрее, чем больше мощность излучения, выше температура и влажность воздуха в рабочем помещении, выше интенсивность выполняемой работы.

ИК-излучение, помимо усиления теплового воздействия окружающей среды на организм работающего, обладает специфическим влиянием. С гигиенической точки зрения важной особенностью ИК-излучения является его способность проникать в живую ткань на разную глубину.

Лучи длинноволнового диапазона (от 3 мкм до 1 мм) задерживаются в поверхностных слоях кожи уже на глубине 0,1 - 0,2 мм. Поэтому их физиологическое воздействие на организм проявляется, главным образом, в повышении температуры кожи и перегреве организма.

Наибольшее воздействие на организм человека оказывает коротковолнового диапазона (от 0,77 до 1,4 мкм), так как оно обладает наибольшей энергией фотонов и способно глубоко проникать в ткани организма и интенсивно поглощаться водой, содержащейся в тканях. В практических условиях тепловое излучение является интегральным, так как нагретые тела излучают одновременно в широком диапазоне длин волн.

Под действием высоких температур и теплового облучения работающих происходят резкое нарушение теплового баланса в организме, биохимические сдвиги, появляются нарушения сердечно-сосудистой и нервной систем, усиливается потоотделение, происходит потеря нужных организму солей, нарушение зрения.

Все эти изменения могут проявиться в виде заболеваний:

- судорожная болезнь , вызванная нарушением водно-солевого баланса, характеризуется появлением резких судорог, преимущественно в конечностях;

- перегревание (тепловая гипертермия) возникает при накоплении избыточного тепла в организме; основным признаком является резкое повышение температуры тела;

- тепловой удар возникает в особо неблагоприятных условиях: выполнение тяжелой физической работы при высокой температуре воздуха в сочетании с высокой влажностью. Тепловые удары возникают в результате проникновения коротковолнового инфракрасного излучения (до 1,5 мкм) через покровы черепа в мягкие ткани головного мозга;

- катаракта (помутнение кристалликов) – профессиональное заболевание глаз, возникающее при длительном воздействии инфракрасных лучей с λ = 0,78-1,8 мкм. К острым нарушениям органов зрения относятся также ожог, конъюктивиты, помутнение и ожог роговицы, ожог тканей передней камеры глаза.

Кроме того, ИК-излучение воздействует на обменные процессы в миокарде, водно-электролитный баланс в организме, на состояние верхних дыхательных путей (развитие хронического ларингоринита, синуситов), не исключается мутагенный эффект теплового излучения.

Поток тепловой энергии, кроме непосредственного воздействия на работающих, нагревает пол, стены, перекрытия, оборудование, в результате чего температура воздуха внутри помещения повышается, что также ухудшает условия работы.