Реферат опасности проявления атмосферного электричества и методы защиты объекта двойным молниеотводом. Защита объекта от воздействия атмосферного статического электричества Меры защиты от статического и атмосферного электричества

  • Глава 1 управление безопасностью жизнедеятельности. Правовые и организационные основы
  • Предмет и содержание курса «Безопасность жизнедеятельности»
  • 1.2. Научный метод курса бжд и связь с другими науками
  • 1.3. Технический прогресс и новые проблемы безопасности жизнедеятельности. Проблемы технотронной цивилизации
  • 1.4. Роль безопасности труда в повышении производительности труда и влияние его на экономические показатели производства
  • 1.5. Экономические последствия и материальные затраты на охрану окружающей среды
  • 1.6. Правовые и нормативно-технические основы безопасности жизнедеятельности
  • 1.7. Организационные основы управления безопасностью жизнедеятельности
  • Государственный и общественный надзор по охране труда
  • 1.9. Планирование и финансирование мероприятий по безопасности жизнедеятельности
  • 1.10. Международное сотрудничество в области безопасности жизнедеятельности
  • Глава 2 основы физиологии труда и комфортные условия жизнедеятельности
  • 2.1. Факторы, определяющие условия обитания человека
  • Классификация основных форм человеческой деятельности
  • 2.3. Категорирование условий труда и работ
  • Показатели условий труда по трудовой нагрузке
  • Показатели условий труда по опасности
  • Показатели условий труда по вредности
  • 2.4. Обеспечение комфортных условий труда: микроклимат помещения
  • 2.5. Освещение производственных помещений. Искусственное и естественное освещение
  • Глава 3 производственный травматизм и профзаболевания
  • Производственный травматизм и профзаболевания: причины и способы снижения
  • 3.2. Учет и расследование несчастных случаев на производстве
  • 3.3. Размер вреда, подлежащего возмещению потерпевшему в результате трудового увечья
  • Глава 4 воздействие негативных факторов на человека и техносферу
  • 4.1. Вредные вещества и методы защиты
  • 4.2. Ионизирующие излучения
  • 4.3. Электромагнитные поля
  • 4.4. Электрический ток
  • 4.5. Защита от статического и атмосферного электричества
  • 4.6. Производственный шум
  • 4.7. Производственные вибрации
  • Глава 5 пожаровзрывобезопасность на производстве
  • Пожарная безопасность производств: физика и химия горения, классификация процессов горения, теории горения, показатели горючести веществ
  • Категорирование помещений и зданий по взрывопожарной и пожарной опасности
  • Категорирование пожаровзрывоопасности производственных помещений
  • 5.3. Классификация взрыво- и пожароопасных зон
  • Классификация пожароопасных зон
  • Классификация взрывоопасных зон
  • 5.4. Категории наружных установок по пожарной опасности
  • Категории наружных установок по пожарной опасности
  • 5.5. Выбор взрыво- и пожарозащищенного электрооборудования
  • Категории взрывоопасных смесей газов и паров с воздухом (гост 12.1.011-78 (1991))
  • Группы взрывоопасных смесей газов и паров с воздухом по температуре самовоспламенения
  • Уровни взрывозащиты электрооборудования
  • Выбор температурных классов электрооборудования
  • 5.6. Категорирование блоков по взрывоопасности
  • Категорирование технологических блоков
  • 5.7. Принцип выбора средств тушения пожаров. Автоматические средства тушения пожаров
  • 5.8. Способы оповещения о пожаре: извещатели и сигнализация
  • Глава 6 безопасность технологических процессов
  • 6.1. Безопасность технологических процессов: этапы создания технологических процессов, потенциальные опасности, требования и направления безопасности
  • 6.2. Технологический регламент и его содержание
  • 6.3. Роль автоматизации для обеспечения безопасности
  • 6.4. План локализации (ликвидации) аварийных ситуаций
  • Раздел 1. «Технология и аппаратурное оформление блока»;
  • 6.6. Сосуды, работающие под давлением
  • Группы сосудов, работающих под давлением
  • 6.7. Инженерно-технические средства защиты. Защитные устройства
  • 6.8. Индивидуальные средства защиты
  • Глава 7 организация экологического контроля, надзора и управления в российской федерации
  • Экологичность технологических процессов
  • Создание безотходных технологических процессов
  • 7.3. Экологический паспорт предприятия
  • 7.4. Экологическая экспертиза и контроль экологичности и безопасности предприятия
  • Глава 8 чрезвычайные ситуации
  • 8.1. Классификация чрезвычайных ситуаций
  • 8.2. Природные чрезвычайные ситуации
  • Инфекционные заболевания людей
  • 8.3. Чрезвычайные ситуации техногенного характера
  • 8.4. Чрезвычайные ситуации химического характера
  • 8.5. Чрезвычайные ситуации военного времени. Современные средства поражения
  • 8.6. Ядерное оружие: общая характеристика, поражающее действие
  • 8.7.Химическое оружие: общая характеристика, поражающее действие
  • Бактериологическое оружие: общая характеристика, поражающее действие
  • 8.9. Перспективные виды оружия массового поражения
  • Организация защиты населения и территории в чрезвычайных ситуациях. План мероприятий для предупреждения и ликвидации чрезвычайных ситуаций
  • Обеспечение устойчивости объектов при чрезвычайных ситуациях
  • Психологическая подготовка населения к чрезвычайным и экстремальным ситуациям
  • Организация оказания медицинской помощи при чрезвычайных ситуациях
  • Основные типы приборов для контроля требования безопасности жизнедеятельности
  • Законодательные и нормативно-правовые документы
  • 2.1. Общие вопросы охраны природы
  • 2.2. Трудовое законодательство
  • 2.3. Общепринятые государственные стандарты
  • 2.4. Санитарные и строительные нормы и правила
  • Рекомендуемая литература
  • 4.5. Защита от статического и атмосферного электричества

    Статическое электричество образуется в результате трения (соприкосновения или разделения) двух диэлектриков друг о друга или диэлектриков о металлы. На диэлектриках электрические заряды удерживаются продолжительное время, вследствие чего они получили название статического электричества.

    Явление статической электризации наблюдается в следующих случаях:

      в потоке и при разбрызгивании жидкости;

      в струе газа или пара;

      при соприкосновении и последующем удалении двух твердых разнородных тел (контактная электризация).

    Электризация тела человека происходит при работе с наэлектризованными изделиями и материалами. Количество накопившегося на людях электричества может быть вполне достаточным для искрового разряда при контакте с заземленным предметом. Считается, что энергия разряда с тела человека достаточна для зажигания практически всех газо-, паровоздушных и некоторых пылевоздушных горючих смесей.

    Действие статического электричества смертельной опасности для человека не представляет. Искровой разряд статического электричества человек ощущает как укол или судорогу. При внезапном уколе может возникнуть испуг и вследствие рефлекторных движений человек может непроизвольно сделать движения, приводящие к падению с высоты, попаданию в опасную зону машин и др.

    Длительное воздействие статического электричества неблагоприятно отражается на здоровье работающего, отрицательно сказывается на его психофизическом состоянии.

    Допустимые уровни напряженности электростатических полей установлены ГОСТ 12.1.045-88 «Электрические поля. Допустимые уровни на рабочих местах и требования к проведению контроля» и Санитарно-гигиеническими нормами допустимой напряженности электростатического поля (№ 1757-77).

    Допустимые уровни напряженности электростатических полей устанавливаются в зависимости от времени пребывания на рабочих местах. Предельно допустимый уровень напряженности электростатических полей устанавливается равным 60 кВ/м в течение 1 часа.

    Защите от статического электричества подлежат все промышленные, опытно-промышленные и лабораторные установки, в которых применяются или получаются вещества, способные при перемещении или переработке подвергаться электризации, с образованием опасных потенциалов (вещества и материалы с удельным объемным сопротивлением выше 10 Ом∙м), а также взрыво- и пожароопасные производства, отнесенные по классификации «Правил устройства электроустановок» к классам В-I, В-Iа, В-Iб, В-Iг, В-II, В-IIа. В помещениях и зонах, которые не относятся к указанным классам, защита должна осуществляться лишь на тех участках, где статическое электричество отрицательно влияет на технологический процесс и качество продукции.

    Меры защиты от статического электричества:

      предотвращение накопления зарядов на электропроводящих частях оборудования, что достигается заземлением оборудования и коммуникаций;

      уменьшение удельных обычных и поверхностных электрических сопротивлений (увлажнение воздуха от 65% до 67%, если это допустимо по условиям технологического процесса; химическая обработка поверхности электропроводными покрытиями; нанесение на поверхность антистатических веществ; добавление антистатических присадок в горючие диэлектрические жидкости);

      снижение интенсивности зарядов статического электричества (достигается подбором скорости движения веществ, исключением разбрызгивания, дробления и распыления веществ, отводом электростатического заряда, подбором поверхностей трения);

      отвод статического электричества, накапливающегося на людях;

      устройство электропроводящих полов или заземленных зон, помостов и рабочих площадок, заземление ручек дверей, поручней лестниц, рукояток приборов, машин и аппаратов;

      обеспечение работающих токопроводящей обувью, антистатическими халатами.

    Мероприятия по защите от прямых ударов молнии

    Молния – сильный искровой разряд между двумя облаками или между облаком и землей.

    Виды ударов молнии:

      прямые удары молнии на объект;

      за счет распределения потенциалов (может поражаться соседний объект);

      за счет индуктивного эффекта (может поражаться третий объект, например, через почву).

    Вероятность поражения объекта молнией:

    где А, В – длина и ширина здания, h– высота здания,n– коэффициент, учитывающий сколько раз может ударять молния в зависимости от климатического пояса.

    Нижнекамск находится в IIIклиматическом поясе. 40 - 60 раз может ударить молния летом,n= 6.

    Защита от прямых ударов молний зданий и сооружений с неметаллической кровлей должна быть выполнена отдельно стоящими или установленными на защищающем объекте стержневыми или тросовыми молниеотводами. При установке молниеотводов на объекте от каждого стержневого молниеприемника или каждой стойки тросового молниеприемника должно быть обеспечено не менее двух токоотводов. При уклоне кровли не более 1/8 может быть использована также молниеприемная сетка из стальной проволоки диаметром не менее 6 мм, прокладываемой в кровле здания. На зданиях и сооружениях с металлической кровлей в качестве молниеприемника должна использоваться сама кровля. При этом все выступающие неметаллические элементы должны быть оборудованы молниеприемниками.

    Наружное установки, содержащие горячие сжиженные газы и легковоспламеняющиеся жидкости, должны быть защищены от прямых ударов молнии следующим образом:

      корпуса установок из железобетона, металлические корпуса установок при толщине металла крыши менее 4 мм должны быть оборудованы молниеотводами, установленными на защищаемом объекте или отдельно стоящими молниеотводами;

      металлические корпуса установок и отдельно стоящих резервуаров при толщине крыши 4 мм и более, а также отдельные резервуары объемом менее 200 м 3 независимо от толщины металла крыши, а также металлические кожуха теплоизолированных установок достаточно присоединить к заземлителю;

      для резервуарных парков, содержащих сжиженные газы общим объемом более 8000 м 3 , а также для резервуарных парков с корпусами из металла и железобетона, содержащих горячие и лекговоспламеняющиеся жидкости, при общем объеме группы резервуаров более 100 тыс. м 3 защиту от прямых ударов молнии следует, как правило, выполнять отдельно стоящими молниеотводами;

      для наружных установок в качестве заземлителей защиты от прямых ударов молнии следует использовать железобетонные фундаменты этих установок или опор отдельно стоящих молниеотводов либо выполнить искусственные заземлители, состоящие из одного вертикального или горизонтального электрода длиной не менее 5 м.

    Для защиты зданий и сооружений от вторичных проявлений молний должны быть предусмотрены следующие мероприятия:

      металлические корпуса всего оборудования должны быть присоединены к защищаемому устройству электроустановок, либо к железобетонному фундаменту здания;

      внутри здания между трубопроводами и другими протяженными металлическими конструкциями в местах их взаимного сближения на расстоянии менее 10 см через каждые 30 м должны быть выполнены перемычки;

      во фланцевых соединениях трубопроводов внутри здания должна быть обеспечена нормальная затяжка – не менее 4 болтов на каждый фланец.

    Для защиты наружных установок от вторичных проявлений молнии металлические корпуса аппаратов должны быть присоединены к заземляющему устройству электрооборудования или к заземлителю защиты от прямых ударов молнии.

    Искусственные заземлители следует располагать под асфальтовым покрытием либо в редкопосещаемых местах (на газонах, в удалении на 5 м и более от грунтовых проезжих и пешеходных дорог и т. п.) При этом для отдельно стоящих молниеотводов искусственный заземлитель должен быть не менее 3 м, объединенных горизонтальным электродом, при расстоянии между вертикальными электродами не менее 5 м.

    Проверка состояния устройств молниезащиты должна проводиться 1 раз в год перед началом грозового сезона.

    Совокупность явлений, результатом которых является образование, сбережение и разрядка свободных электрозарядов на поверхности диэлектриков или изолированных проводниках, называют статическим электричеством. Образующийся заряд может сохраняться и накапливать достаточно продолжительное время. Процесс получения любой поверхностью или телом определенного заряда (положительного или отрицательного) называется электризацией. Статические электрозаряды чаще всего образуются из-за трения друг о друга или о металл твердых материалов, не проводящих ток. Относительно земли напряжение во время статической электризации часто может достигать 100 тыс. вольт.

    Разряды статического электричества могут стать причиной возникновения сильных пожаров и взрывов, а также иметь негативное влияние на здоровье человека, как при непосредственном контакте, так и из-за опасного электрического поля образующегося вокруг заряженного тела. Выделяющейся энергии достаточно много для мгновенного для воспламенения пыле и газовоздушных смесей.

    Специалисты рекомендуют применять заземления, нейтрализаторы (индукционные, радиоактивные и высоковольтные), увлажнители воздуха, специальные экраны и антиэлектростатические вещества для эффективной защиты от статических зарядов. Сотрудникам, в качестве профилактики, выдают антистатическую спецодежду и токопроводящую обувь имеющую сопротивление подошвы до 108 Ом.

    Атмосферное электричество: молниезащита

    Наиболее часто атмосферное электричество концентрируется в кучевых (грозовых) облаках и разряжается через молнии, которые имеют мощное поражающее действие. Прямое их попадание в дом может полностью разрушить здание, убить людей, находящихся внутри или привести к сильному пожару или техногенным авариям.

    После того как Франклин объяснил всему миру природу молний человечество постоянно работает над усовершенствованием методов по молниезащите. В настоящее время на смену простым стальным или медным громоотводам с токоотводом и заземлением пришли инновационные активные молниеприемники. Они за счет ионизации воздуха вокруг себя самостоятельно притягивают к себе разряды молний. Современная система молниезащиты объекта включает защиту от прямых ударов молнии и вторичных ее проявлений.

    Защита от статического электричества и молниезащита

    Для предотвращения неприятных последствий от образования статических зарядов и молний необходимо при проектировании и эксплуатации объектов осуществлять комплекс мер, направленных на их защиту от статического электричества и молниезащиту .

    Основные здания и сооружения не принимаются в эксплуатацию без защиты от статического электричества и молниезащиты . Промышленные здания и помещения, оборудование и приборы, различные коммуникации в соответствии с их классификацией по ПУЭ должны иметь молниезащиту І, ІІ или ІІІ категории, а также защиту от статических разрядов для взрыво- и пожароопасных помещений, зон открытых установок, имеющие класс B-I, B-I6, В-II и B-IIa.

    Защита от статического электричества обеспечивается благодаря таким мероприятиям, как:

    • проверка исправности и безотказности работы и непосредственного наличия заземлений, систем отвода зарядов и нейтрализации;
    • очистка газвоздушных смесей от взвешенных примесей;
    • четкое выполнение технологических инструкций (недопущение разбрызгивания, дробления или распыления материалов, увеличения их скорости движения и т.п.)
    • металлическое и неметаллическое оборудование в одном помещении должны быть в одной электроцепи, которая соединяется с контуром заземления минимум в 2 точках;
    • подача трапа к самолету, открытие автоцистерн и т.п. мероприятия проводится только после присоединения к ним заземления;
    • используемые резиновые шланги для налива жидких веществ оснащаются проволокой и наконечниками из меди.

    Элементы молниезащиты должны регулярно проверяться и по необходимости ремонтироваться. Специалисты рекомендуют проводить проверку:

    • надежности связи между токоведущими частями молниезащиты,
    • наличия механических, коррозионных повреждений частей системы защиты;
    • сопротивления всех заземлителей.

    Молниезащита - эффективное средство защиты и повышения устойчивости функционирования объектов при воздействии на них атмосферного статического электричества. Она включает комплекс мероприятий и устройств, предназначенных для обеспечения безопасности людей, предохранения зданий, сооружений, оборудования и материалов от взрывов, загораний и разрушений, возможных при воздействии молний.

    Для всех зданий и сооружений, не связанных с производством и хранением взрывчатых веществ, а также для линий электропередач и контактных сетей, проектирование и изготовление молниезащиты должно выполняться согласно РД 34.21.122-87.

    По степени защиты здания и сооружения подразделяются на три категории: здания и сооружения, отнесённые к I и II категории молниезащиты, должны быть защищены от прямых ударов молнии, вторичных проявлений молнии и заноса высокого потенциала через наземные, надземные и подземные металлические коммуникации; здания и сооружения, отнесённые к III категории молниезащиты, должны быть защищены от прямых ударов молнии и заноса высокого потенциала через наземные и подземные металлические коммуникации.

    Для создания зон защиты применяют одиночный стержневой молниеотвод, двойной стержневой молниеотвод, многократный стержневой молниеотвод, одиночный или двойной тросовый молниеотвод.

    Сила землетрясений от 1 до 4 баллов не вызывает повреждение зданий и сооружений, а также остаточных явлений в грунтах и изменения режима грунтовых и наземных вод. Землетрясение силой в 1 балл вызывает незаметное сотрясение почвы, колебание которой регистрируются только приборами. Землетрясения силой 2 балла отмечаются некоторыми, очень чуткими лицами, находящимися в полном покое. При землетрясение 3 балла внимательными наблюдателями замечается очень легкое покачивание висячих предметов. При землетрясении 4 балла наблюдается легкое раскачивание висячих предметов и неподвижных автомашин; слабый звон плотно поставленной неустойчивой посуды. Землетрясение в 4 балла распознаётся большинством людей, находящихся внутри здания. Землетрясение силой 5 баллов вызывает лёгкий скрип полов и перегородок; дребезжание стёкол, осыпание побелки, Движение незакрытых дверей и окон, на поверхности непроточных водоёмов образуются небольшие волны. Заметно качаются висячие предметы, наблюдается выплёскивание воды из наполненных сосудов, возможна остановка маятников часов. Землетрясение силой 6 баллов лёгкие повреждения многих зданий, в одноэтажных кирпичных, каменных и саманных домах наблюдаются значительные повреждения. В сырых грунтах образуются трещины шириной до 1 см, отмечается небольшое изменение дебита источников и уровня воды в колодцах. В помещениях качаются висячие предметы, иногда падают книги, посуда, лёгкая мебель сдвигается, передвижение людей неустойчиво. Землетрясение силой 7 баллов вызывает значительные повреждения зданий, в некоторых случаях их разрушения. На дорогах появляются трещины, наблюдаются нарушение стыков трубопроводов, повреждение каменных оград. В сухих грунтах образуются тонкие трещины, возможны оползни и обвалы. Изменяется дебит источников и уровней грунтовых вод. Возникают новые и пропадают старые источники воды. В помещениях сильно качаются висячие предметы, легкая мебель сдвигается, падают книги, посуда и вазы. Передвижение людей без дополнительной опоры затруднено. Все люди покидают помещение. Землетрясение силой 8 баллов вызывают значительные повреждения большинства зданий. В некоторых полные разрушения. Образуется большое количество трещин на склонах гор и в сырых грунтах; наблюдаются осыпи, оползни и горные обвалы. Вода в водоемах мутная; меняется дебит источников и уровней воды в колодцах. В помещениях сдвигается и частично опрокидывается мебель, лёгкие предметы подскакивают и опрокидываются. Люди с трудом удерживаются на ногах. Все выбегают из помещений. Землетрясение силой 9 баллов вызывают искривления железнодорожных путей, повреждение насыпей дорог, разрушение дымовых труб, башен. Большинство зданий обрушиваются. В грунтах образуются трещины до 10 см; наблюдаются горные обвалы, оползни, небольшие грязевые извержения, в водоёмах большое волнение. В помещениях опрокидывается и ломается мебель. Наблюдается большое беспокойство животных. Землетрясение силой 10 баллов вызывают обрушение многих зданий, дамбы и насыпи получают значительные повреждения, на дорожном полотне трещины и деформации, обрушение труб, башен, памятников, оград. Возникают трещины в грунтах до 1 м. Наблюдается обвал скал и морских берегов. Наблюдается возникновение новых озёр, прибоя и выплёскивания воды в водоёмах и реках. В помещениях многочисленные повреждения предметов домашнего обихода. Животные мечутся и воют. Землетрясение силой 11 баллов вызывают общее разрушение зданий, разрушение насыпей на больших протяжениях. Трубопроводы проходят в полную негодность. На больших протяжениях железнодорожные пути приходят в полную непригодность. На поверхности земли наблюдаются многочисленные трещины и вертикальные перемещения пластов. Большие обвалы, оползни. Сильно меняется режим водоисточников и водоёмов и уровень грунтовых вод. В помещениях наблюдается гибель значительной части населения, животных и имущества под обломками зданий. Землетрясение силой 12 баллов вызывает общее разрушение зданий и сооружений. Значительная часть населения гибнет от оползней. В грунте наблюдаются вертикальные и горизонтальные разрывы и сдвиги. Образуются озёра, водопады, изменяются русла рек. Растительность и животные погибают от обвалов и осыпей в горных районах.


    Статическое электричество образуется в результате трения (соприкосновения или разделения) двух диэлектриков друг о друга или диэлектриков о металлы. На диэлектриках электрические заряды удерживаются продолжительное время, вследствие чего они получили название статического электричества.

    Явление статической электризации наблюдается в следующих случаях:

    В потоке и при разбрызгивании жидкости;

    В струе газа или пара;

    При соприкосновении и последующем удалении двух твердых разнородных тел (контактная электризация).

    Электризация тела человека происходит при работе с наэлектризованными изделиями и материалами. Количество накопившегося на людях электричества может быть вполне достаточным для искрового разряда при контакте с заземленным предметом. Считается, что энергия разряда с тела человека достаточна для зажигания практически всех газо-, паровоздушных и некоторых пылевоздушных горючих смесей.

    Действие статического электричества смертельной опасности для человека не представляет. Искровой разряд статического электричества человек ощущает как укол или судорогу. При внезапном уколе может возникнуть испуг и вследствие рефлекторных движений человек может непроизвольно сделать движения, приводящие к падению с высоты, попаданию в опасную зону машин и др.

    Длительное воздействие статического электричества неблагоприятно отражается на здоровье работающего, отрицательно сказывается на его психофизическом состоянии.

    Допустимые уровни напряженности электростатических полей установлены ГОСТ 12.1.045-88 «Электрические поля. Допустимые уровни на рабочих местах и требования к проведению контроля» и Санитарно-гигиеническими нормами допустимой напряженности электростатического поля (№ 1757-77).

    Допустимые уровни напряженности электростатических полей устанавливаются в зависимости от времени пребывания на рабочих местах. Предельно допустимый уровень напряженности электростатических полей устанавливается равным 60 кВ/м в течение 1 часа.

    Защите от статического электричества подлежат все промышленные, опытно-промышленные и лабораторные установки, в которых применяются или получаются вещества, способные при перемещении или переработке подвергаться электризации, с образованием опасных потенциалов (вещества и материалы с удельным объемным сопротивлением выше 10 Ом∙м), а также взрыво- и пожароопасные производства, отнесенные по классификации «Правил устройства электроустановок» к классам В-I, В-Iа, В-Iб, В-Iг, В-II, В-IIа. В помещениях и зонах, которые не относятся к указанным классам, защита должна осуществляться лишь на тех участках, где статическое электричество отрицательно влияет на технологический процесс и качество продукции.

    Меры защиты от статического электричества:

    Предотвращение накопления зарядов на электропроводящих частях оборудования, что достигается заземлением оборудования и коммуникаций;

    Уменьшение удельных обычных и поверхностных электрических сопротивлений (увлажнение воздуха от 65% до 67%, если это допустимо по условиям технологического процесса; химическая обработка поверхности электропроводными покрытиями; нанесение на поверхность антистатических веществ; добавление антистатических присадок в горючие диэлектрические жидкости);

    Снижение интенсивности зарядов статического электричества (достигается подбором скорости движения веществ, исключением разбрызгивания, дробления и распыления веществ, отводом электростатического заряда, подбором поверхностей трения);

    Отвод статического электричества, накапливающегося на людях;

    Устройство электропроводящих полов или заземленных зон, помостов и рабочих площадок, заземление ручек дверей, поручней лестниц, рукояток приборов, машин и аппаратов;

    Обеспечение работающих токопроводящей обувью, антистатическими халатами.

    ФИЗИЧЕСКАЯ ПРИРОДА И ОПАСНЫЕ ФАКТОРЫ АТМОСФЕРНОГО ЭЛЕКТРИЧЕСТВА

    Атмосферное электричество образуется и концентрируется в облаках - образованиях из мелких водяных частиц, находящихся в жидком и твердом состоянии.

    Площадь океанов и морей составляет 71 % поверхности земного шара. Каждый 1 см 2 поверхности Земли в течение года в среднем получает 460 кДж солнечной энергии. Подсчитано, что из этого количества 93 кДж/(см*год) расходуется на испарение воды с поверхности водных бассейнов. Поднимаясь вверх, водяные пары охлаждаются и конденсируются в мельчайшую водяную пыль, что сопровождается выделением теплоты парообразования (2260 кДж/л). Образовавшийся избыток внутренней энергии частично расходуется на эмиссию частиц с поверхности мельчайших водяных капелек. Для от

    деления от молекулы воды протона (Н) требуется 5,1 эВ, для отделения электрона -12,6 эВ, а для отделения молекулы от кристалла льда достаточно 0,6 эВ, поэтому основными эмитируемыми частицами являются молекулы воды и протоны. Количество эмитируемых протонов пропорционально массе частиц. Результирующий поток протонов всегда направлен от более крупных капелек к мелким. Соответственно более крупные капельки приобретают отрицательный заряд, а мелкие - положительный. Чистая вода - хороший диэлектрик и заряды на поверхности капелек сохраняются длительное время. Более крупные тяжелые отрицательно заряженные капельки образуют нижний отрицательно заряженный слой облака. Мелкие легкие капельки объединяются в верхний положительно заряженный слой облака. Электростатическое притяжение разноименно заряженных слоев поддерживает сохранность облака как целого.

    Эмиссия протонов возникает дополнительно при кристаллизации водяных частиц (превращении их в снежинки, градинки), так как при этом выделяется теплота плавления, равная 335 кДж/л. При соударениях капелек, снежинок, градинок работа ветра в конечном счете приводит к эмиссии протонов, к изменению величины заряда частиц. Следовательно, атмосферное электричество (АтЭ) и статическое электричество (СтЭ) имеют одинаковую физическую природу. Различаются они масштабом образования зарядов и знаком эмитируемых частиц (электроны или протоны).

    О единстве природы АтЭ и СтЭ свидетельствуют опытные данные. Сухой снег представляет собой типичное сыпучее тело; при трении снежинок друг о друга и их ударах о землю и о местные предметы снег должен электризоваться, что и происходит в действительности. Наблюдения на Крайнем Севере и в Сибири показывают, что при низких температурах во время сильных снегопадов и метелей электризация снега настолько велика, что происходят зимние грозы, в облаках снежной пыли бывают виднысиние и фиолетовые вспышки, наблюдается свечение остроконечных предметов, образуются шаровые молнии. Очень;ильные метели иногда заряжают телеграфные провода так сильно, что подк:лючаемые к ним электролампочки светятся полным накалом. Те же явления наблюдаются во время сильных пыльных (песчанных) бурь.

    Наличие множества взаимодействующих факторов дает сложную картину распределения зарядов АтЭ в облаках и их частях. По экспериментальным данным нижняя часть облаков чаще всего имеет отрицательный заряд, а верхняя - положительный, но может иметь место и противоположная полярность частей облака. Облака могут также нести преимущественно заряд одного знака.

    Заряд облака (части облака) образуют мельчайшие одноименно заряженные частицы воды (в жидком и твердом состоянии), размещенные в объеме нескольких км 3 .

    Электрический потенциал грозового облака составляет десятки миллионов вольт, но может достигать 1 млрд. В. Однако общий заряд облака равен нескольким кулонам.

    Основной формой релаксации зарядов АтЭ является молния- электрический разряд между облаком и землей или между облаками (частями облаков). Диаметр канала молнии равен примерно 1 см, ток в канале молнии составляет десятки килоампер, но может достигать 100 кА, температура в канале молнии равна примерно 25 000°С, продолжительность разряда составляет доли секунды.

    Молния является мощным поражающим опасным фактором. Прямой удар молнии приводит к механическим разрушениям зданий, сооружений, скал, деревьев, вызывает пожары и взрывы, является прямой или косвенной причиной гибели людей. Механические разрушения вызываются мгновенным превращением воды и вещества в пар высокого давления на путях протекания тока молнии в названных объектах. Прямой удар молнии называют первичным воздействием атмосферного электричества.

    К вторичному воздействию АтЭ относят: электростатическую и электромагнитную индукции; занос высоких потенциалов в здания и сооружения.

    Рассмотрим опасные факторы вторичного воздействия АтЭ. Образовавшийся электростатический заряд облака наводит (индукцирует) заряд противоположного знака на предметах, изолированных от земли (оборудование внутри и вне зданий, металлические крыши зданий, провода ЛЭП, радиосети и т. п.). Эти заряды сохраняются и после удара молнии. Они релаксируют обычно путем электрического разряда на ближайшие заземленные предметы, что может вызвать электротравматизм людей, воспламенение горючих смесей и взрывы. В этом заключается опасность электростатической индукции.

    Явление электромагнитной индукции заключается в следующем. В канале молнии протекает очень мощный и быстро изменяющийся во времени ток. Он создает мощное переменное во времени магнитное поле. Такое поле индуцирует в металлических контурах электродвижущую силу разной величины. В местах сближения контуров между ними могут происходить электрические разряды, способные воспламенить горючие смеси и вызвать электротравматизм.

    Занос высоких потенциалов в здание происходит в результате прямого удара молнии в металлокоммуникации, расположенные на уровне земли или над ней вне зданий, но входящие внутрь зданий. Здесь под металлокоммуникациями понимают рельсовые пути, водопроводы, газопроводы, провода ЛЭП и т. п. Занесение высоких потенциалов внутрь здания сопровождается электрическими разрядами на заземленное оборудование, что может привести к воспламенению горючих смесей и электротравматизму людей.

    ЗАЩИТА ОТ АТМОСФЕРНОГО ЭЛЕКТРИЧЕСТВА

    Требуемая степень защиты зданий, сооружений и открытых установок от воздействия атмосферного электричества зависит от взрывопожароопасности названных объектов и обеспечивается правильным выбором категории устройства молниезащиты и типа зоны защиты объекта от прямых ударов молнии.

    Степень взрывопожароопасности объектов оценивается по классификации Правил устройства электроустановок (ПУЭ). Инструкция по проектированию и устройству молниезащиты СН 305- 77 устанавливает три категории устройства молниезащиты (I, II, III) и два типа (А и Б) зон защиты объектов от прямых ударов молнии. Зона защиты типа А обеспечивает перехват на пути к защищаемому объекту не менее 99,5 % молний, а типа Б - не менее 95 %.

    По I категории организуется защита объектов, относимых по классификации ПУЭ к взрывоопасным зонам классов В-1 и В-П (см. гл. 20). Зона защиты для всех объектов (независимо от места расположения объекта на территории СССР и от интенсивности грозовой деятельности в месте расположения) применяется только типа А.

    По II категории осуществляется защита объектов, относимых по классификации ПУЭ к взрывоопасным зонам классов В-1а, В-16 и В-Па. Тип зоны защиты при расположении объектов в местностях со средней грозовой деятельностью 10 ч и более в год определяется по расчетному количеству N поражений объекта молнией в течение года:

    при N<=1 достаточна зона защиты типа Б; при N> 1 должна обеспечиваться зона защиты типа А. Порядок расчета величины N показан в нижеприведенном примере. Для наружных технологических установок и открытых складов, относимых по ПУЭ к зонам класса В-1г, на всей территории СССР (без расчета N) принимается зона защиты типа Б.

    По III категории организуется защита объектов, относимых по ПУЭ к пожароопасным зонам классов П-1, П-2 и П-2а. При расположении объектов в местностях со средней грозовой деятельностью 20 ч и более в год и при N> 2 должна обеспечиваться зона защиты типа А, в остальных случаях - типа Б. По III категории осуществляется также молниезащита общественных и жилых зданий,башен, вышек, труб, предприятий, зданий и сооружений сельскохозяйственного назначения. Тип зоны защиты этих объектов определяется в соответствии с указаниями СН 305-77.

    Объекты I и II категорий устройства молниезащиты должны быть защищены от всех четырех видов воздействия атмосферного электричества, а объекты III категории - от прямых ударов молнии и от заноса высоких потенциалов внутрь зданий и сооружений.

    Защита от электростатической индукции заключается в отводе индуцируемых статических зарядов в землю путем присоединения металлического оборудования, расположенного внутри и вне зданий, к специальному заземлителю или к защитному заземлению электроустановок; сопротивление заземлителя растеканию тока промышленной частоты должно быть не более 10 Ом.

    Для защиты от электромагнитной индукции между трубопроводами и другими протяженными металлокоммуникациями в местах их сближения на расстояние 10 см и менее через каждые 20 м устанавливают (приваривают) металлические перемычки, по которым наведенные токи перетекают из одного контура в другой без образования электрических разрядов между ними.

    Защита от заноса высоких потенциалов внутрь зданий обеспечивается отводом потенциалов в землю вне зданий путем присоединения металлокоммуникации на входе в здания к заземлителям защиты от электростатической индукции или к защитным заземлениям электроустановок.

    Для защиты объектов от прямых ударов молнии сооружаются молниеот-воды, принимающие на себя ток молнии и отводящие его в землю.

    Объекты I категории молниезащиты защищают от прямых ударов молнии отдельно стоящими стержневыми, тросовыми молниеотводами или молниеотводами, устанавливаемыми на защищаемомобъекте, но электрически изолированными от него.